Your source for the latest research news # **Science News** from research organizations # Brood parasitism in fish Date: May 9, 2018 Source: University of Konstanz Summary: Biologists have demonstrated that 'evolutionary experience' as well as learning protects cichlid fish from the brood parasitism practiced by the African cuckoo catfish. #### **FULL STORY** There are other animals besides the cuckoo who smuggle their offspring into another animal's nest. The *synodontis multipunctatus*, which occurs in Lake Tanganyika in Africa and is better known as cuckoo catfish, is just as cunning as the cuckoo is. Just like the bird, this savvy parasite manages to place its eggs among those of cichlids. To protect their eggs, cichlids carry them in their mouths. This can be fatal for the cichlids' own offspring if cuckoo catfish eggs are among them. Professor Axel Meyer, an evolutionary biologist from the University of Konstanz, and a team of researchers from the Institute of Vertebrate Biology in Brno (Czech Republic) have carried out research into the evolutionary strategies employed by cuckoo catfish and various types of cichlids that occur in Lake Tanganyika and several other African lakes. Their study paints a fascinating picture of evolutionarily shaped and individually learned defence behaviour as well as the deception efforts employed by both species of fish -- and the high price that cichlids pay for keeping the illegitimate offspring of the cuckoo catfish away from their own eggs. The research findings were published in the *Science Advances* issue published on 2 May 2018. Lake Tanganyika in Africa is famous for its biodiversity. Many of its 250 endemic species of cichlids are mouth-breeders: To protect their offspring and prevent other fish from devouring it, cichlids carry and breed their eggs in their mouths. For several weeks after hatching and swimming by themselves, the young fish return to their mother's mouth for protection. It is this very particular brood care behaviour that the cuckoo catfish, also endemic to Lake Tanganyika, has learned to exploit: When the cichlids spawn, it simply places its own eggs among a cichlid's clutch of eggs. If this goes unnoticed by the cichlid and if it cannot tell its own eggs apart from those of the catfish, it will carry and breed both its own and the catfish eggs in its mouth. However, the larvae of the cuckoo catfish hatch sooner, devouring the cichlid's own offspring which the deceived mother cichlid believes to be safe. Often, the cichlid will believe the illegitimate offspring of the catfish to be her own even then, continuing to protect it. But the cichlids are not entirely defenceless: They have learned to defend themselves against the cunning of the cuckoo catfish. When gathering their eggs into their mouth, they try to identify and exclude the smuggled eggs. Often, however, overcaution will lead them to reject some of their own eggs as well. A high price that the cichlids pay in return for their own "evolutionary fitness," a price, however, they cannot avoid paying if their offspring is to survive. #### "Evolutionary experience" "Both species of fish have co-evolved for millions of years," says Axel Meyer about their well-matched relationship of deception and defence. The behaviour of these two species is evidence of what the biologist calls "evolutionary experience," which he was able to document in his joint study with his colleagues from Brno. The scientists obtained eggs both from the cuckoo catfish and from the mouthbreeding cichlids that live in Lake Tanganyika and raised them in an aquarium. Then, they compared the captive cichlids' capacity for distinguishing between their own eggs and those of the cuckoo catfish with that of other types of cichlid from other bodies of water where cuckoo catfish do not occur. The result: The deceptive strategy employed by the cuckoo catfish worked between three and eleven times better on the "evolutionarily naive" cichlids (from other bodies of water). Due to their "evolutionary experience," the cichlids from Lake Tanganyika, who share an evolutionary history with the cuckoo catfish, were much more successful in identifying and rejecting the parasite's eggs. By the term "evolutionary experience" the scientists mean natural selection in favour of the ability to discriminate smuggled eggs. ### Individual learning works in co-evolved fish, but on "evolutionarily naïve" species The study also revealed that cichlids lacking "evolutionary experience" are unable to learn to reject the eggs of the cuckoo catfish -- in contrast to coevolved cichlids that increase their chances to see through the cuckoo catfish trick. This ability to adapt made the cichlids from Lake Tanganyika much more successful when coping with brood parasites. These findings suggest that is not the combination of "evolutionary experience" with individual experience and the ability to learn that help cichlids discriminate between their own and foreign eggs. #### Unique among fish Several bird species are known to practice brood parasitism, i.e. the smuggling of eggs into another bird's nest. Among fish, the cuckoo catfish is the only known obligate brood parasite. None of the other 40 catfish species endemic to Lake Tanganyika are known to behave like this. ### **Story Source:** Materials provided by University of Konstanz. Note: Content may be edited for style and length. | Cite This Page: | MLA | APA | Chicago | |-----------------|-----|-----|---------| University of Konstanz. "Brood parasitism in fish." ScienceDaily. ScienceDaily, 9 May 2018. <a href="https://www.sciencedaily.com/releases/2018/05/180509104951.htm">www.sciencedaily.com/releases/2018/05/180509104951.htm</a>. #### **RELATED STORIES** ### Baby Fish Exercising, a Surprising Source of Adaptive Variation in Fish Jaws Aug. 1, 2017 — A frustration of evolutionary biologists is that genetics can account for only a small percent of variation in physical traits. Now researchers have found new results on how another factor, a ... **read more** » ### Rarely-Seen Event of Ant Brood Parasitism by Scuttle Flies Video-Documented Jan. 31, 2017 — Ant brood parasitism by scuttle flies is a rarely observed phenomenon. However, scientists have recently video-documented two such interactions. One is a species that harasses worker ants to get them ... read more » #### **Evolutionary Split Up Without Geographic Barriers** July 5, 2016 — Evolutionary biologists have completed the most extensive study of sympatric speciation so far. They used around 20,000 characteristics of 450 fish to document the parallel evolution of cichlid fish ... **read more** » ### Evolutionary Biologists Observe Parallel, Repeated Evolution of Cichlid Fish in Nicaragua Oct. 28, 2014 — If one would rewind the tape of life, would evolution result in the same outcome? An evolutionary biologist came up with this famous question. He suggested that evolution would not repeat itself: the ... read more » #### FROM AROUND THE WEB Below are relevant articles that may interest you. ScienceDaily shares links and proceeds with scholarly publications in the TrendMD network. ### Tapeworms: Causes, symptoms, and treatments University of Illinois-Chicago, School of Medicine, Medical News Today #### Should we worry about tapeworms? Medical News Today ### Bilharzia (schistosomiasis): Transmission, symptoms, and treatment University of Illinois-Chicago, School of Medicine, Medical News Today ### What is schistosomiasis (bilharzia)? What causes schistosomiasis (bilharzia)? Medical News Today #### The Personal-Story Approach Carl Goldberg et al., American Journal of Psychotherapy ### BMJ Open Science: bringing the science back into medicine Kaitlyn Hair, BMJ Open Science Blog ### **Arizona AG Plans to Sue Theranos** 360Dx ### Observing Group Psychotherapy—An Affective Learning Experience Herbert Kritzer et al., American Journal of Psychotherapy Powered by # **Free Subscriptions** Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader: ### **Follow Us** Keep up to date with the latest news from ScienceDaily via social networks: - **f** Facebook - ▼ Twitter - 8+ Google+ - in LinkedIn ### Have Feedback? Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions? - Leave Feedback - Contact Us About This Site | Editorial Staff | Awards & Reviews | Contribute | Advertise | Privacy Policy | Terms of Use Copyright 2018 ScienceDaily or by other parties, where indicated. All rights controlled by their respective owners. Content on this website is for information only. It is not intended to provide medical or other professional advice. Views expressed here do not necessarily reflect those of ScienceDaily, its staff, its contributors, or its partners. Financial support for ScienceDaily comes from advertisements and referral programs, where indicated.