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Abstract Two cognate hormones, growth hormone (GH)
and somatolactin (SL), control several important physio-
logical processes in vertebrates. Knowledge about GH and
its receptor (GHR) has accumulated over the last decades.
However, much less is known about SL and its receptor
(SLR). SL is found only in fish (including lungfish), sug-
gesting that it was present in the common ancestor of
vertebrates, but was lost secondarily in the lineage leading
to land vertebrates after the lungfish branched off. SLR was
suggested to be a duplicated copy of GHR acquired only in
teleosts via the fish-specific genome duplication (FSGD).
This scenario (i.e., the existence of SL but not SLR in the
vertebrate ancestors) is intriguing but contested. In this
study, we first evaluated the plausibility of this scenario
through synteny analyses and found that the loci for GHR
and SLR are located in syntenic genomic positions, whereas
the loci for GH and SL are not. Next, we cloned GHRs of
lungfish and sturgeon, which possess SL but did not
undergo the FSGD (i.e., they should not possess SLR).
Their phylogenetic positions in the GHR/SLR gene tree
further support the fish-specific scenario for the GHR-SLR
duplication. Interestingly, their sequences share greater
similarity with teleost SLRs and reptilian/amphibian GHRs
than with the GHRs of mammals, birds, and teleosts. On
the basis of these results, we discuss the validity of the
nomenclature of the teleost-specific copy of GHR as SLR
and an ancestral receptor(s) for SL before the evolution of
SLR during the FSGD.
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Introduction

Somatolactin (SL) is a hormone that belongs to the growth
hormone (GH)/prolactin (PRL) family, and is either up- or
down-regulated during various important physiological
activities in fish (Fukada et al. 2005 and references
therein). Although direct evidence for the role of SL in
these activities is mostly lacking, the recent identification
of a SL-deficient mutant in medaka (color interfere, ci)
demonstrated that SL functions in body-color regulation,
lipid metabolism, or cortisol secretion in vivo (Fukamachi
et al. 2004, 2005, 2006). Further analyses of the ci phe-
notypes might provide evidence for other potential
functions since the SL receptor (SLR) is rather broadly
expressed in various organs (Fukada et al. 2005; Saera-Vila
et al. 2005; Fukamachi et al. 2005; Jiao et al. 2006; Ozaki
et al. 2006).

The current nomenclature of the fish SLR is controver-
sial and confusing, as is often the case with gene families
that resulted from complicated gene duplications (Mindell
and Meyer 2001). The confusion arose because SLR, which
was first defined in salmon (Fukada et al. 2005), is
orthologous to a subset of growth hormone receptors
(GHRs, particularly GHRI) of other teleosts (Fukamachi
et al. 2005). Several teleost species have two divergent
GHR-like genes that exibit distinctive residual and struc-
tural differences, and whose sequences are less than 40%
identical. In addition, their in vitro characteristics were
shown to be different in salmon (Fukada et al. 2004, 2005);
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i.e., one of the GHRs binds GH, while the other predom-
inantly binds SL (in this manuscript, we call the former
GHR and the latter SLR). Nevertheless, the teleost GHR
and SLR are often assumed to be duplicated copies of an
ancestral GHR (Saera-Vila et al. 2005; Jiao et al. 2006;
Ozaki et al. 2006) that were acquired through the fish-
specific genome duplication (FSGD).

The FSGD, which occurred in the lineage leading to
modern (teleost) fishes (Hoegg and Meyer 2005; Meyer
and Van de Peer 2005), produced many teleost-specific
duplicated genes (Meyer and Schartl 1999; Postlethwait
et al. 2004; Mitani et al. 2006; and references therein).
However, the evolutionary scenario, that SLR is a teleost-
specific paralogue of GHR, remains an open question. This
is because lungfish and sturgeon, which did not experience
the FSGD, and hence should not possess duplicated copies
of GHR (i.e., SLR), indeed do have SL (Amemiya et al.
1999; May et al. 1999). These findings suggest that the SL
gene already existed in the common ancestor of verte-
brates, but that SLR was later acquired via the FSGD only
in teleosts (Fig. 1).

In this study, we used available synteny data to first
assess whether or not the teleost SLR is really a duplicated
copy of GHR. We then cloned GHRs of lungfish and
sturgeon. Because both of these fish are expected to possess
the ancestral hormone-receptor set (i.e., GH, SL, and one
copy of GHR), which is different from that of tetrapods
(i.e., GH and one copy of GHR) or teleosts (i.e., GH, SL,
and two copies of GHR), their GHR sequences might have
unique features, and could be helpful for characterizing the
evolutionary history of the receptor(s) for SL.

??? SLR
SL
GHR
H
Lungfish  Sturgeon

Teleosts

l« The FSGD

Il
Acquisition of SLR?

Tetrapods

Loss of SL mp

Presence of SL without SLR?

Fig. 1 The hypothesis addressed in this study. Phylogenetic rela-
tionships among tetrapods, lungfish, sturgeon, and teleosts are shown.
GH exists in all lineages. GHR has been identified in tetrapods and
teleosts. SL has been identified so far only in the fish lineages,
indicating that SL should have been secondarily lost from land
vertebrates (arrow on the left). To date, SLR has been found only in
teleosts and may be a duplicated copy of GHR acquired via the FSGD
(arrow on the right). This evolutionary scenario, however, assumes a
hormone-receptor set of GH, SL, and GHR, but not SLR in some fish
lineages and the common vertebrate ancestor (indicated by red lines)
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Materials and Methods
Synteny

Genomic sequences containing GHR, SLR, GH, or SL, were
retrieved from the following databases: National Center for
Biotechnology Information (NCBI; human, http://www.
ncbi.nlm.nih.gov/genome/guide/human/), University of
Tokyo Genome Browser (UTGB; medaka, http://www.
medaka.utgenome.org/, version 1.0), Joint Genome Insti-

tute Jar, fugu, http://www.genome.jgi-psf.org/
Takru4/Takru4.home.html, version 4.0), and Ensembl
(zebrafish, http://www.ensembl.org/Danio_rerio/index.

html, version 6.0). Annotation of human chromosomes
followed that of the NCBI database. We manually rean-
notated other teleost sequences by blastx, and the human
gene with the lowest e-value was used for the annotation.
In cases where multiple human genes showed similarly low
e-values (e.g., genes in a gene family), all were included.
We ignored any transposase-like or reverse transcriptase-
like sequences, which represented repetitive sequences.

Fish

We used lungfish (Protopterus dolloi) and sturgeon (Huso
dauricus) samples stored at —80°C in the laboratory. We
confirmed the species’ identity by sequencing fragments of
their 16S rRNA wusing universal primers (5-CGCCTG
TTTAACAAAAACAT-3" and 5'-CCGGTCTGAACTCA
GATCACGT-3") and constructing phylogenetic trees with
corresponding sequences available on the GenBank data-
base (data not shown).

Cloning

We designed four degenerate primers for nested reverse-
transcriptase polymerase chain reactions (RT-PCR) on the
regions relatively conserved among vertebrate GHR/SLRs.
Primer sequences for the first PCR are f: 5-ATH-
GTNCARCCNGAYCCNCC-3' and r: 5-ARYTCDATRA
AYTCNACCCA-3', and those for the second PCR are f: 5'-
YTNAAYTGGACNYTNYTNAA-3' and r: 5'-TCDATNC
CYTTDATYTTNGG-3'. Total RNA was extracted from
frozen muscle samples using TRIZOL (Invitrogen), and
template cDNA was synthesized by SuperScript III reverse
transcriptase (Invitrogen) using 3’ (5'-ATTCTAGAGGCC
GAGGCGGCCGACATGTTTTTTTTTTTTTTTTTVN-3')
and 5’ (5-AAGCAGTGGTATCAACGCAGAGTGGCCA
TTATGGCCGGG-3") adaptors. RT-PCR parameters were
94°C for 1 min; 40 cycles of 98°C for 20 s, 40°C for 1 min,
72°C for 1 min; with a final extension at 72°C for 10 min.
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Amplified bands were excised from an agarose gel, purified
using HiBind DNA column (Peqlab), and directly
sequenced using the BigDye Terminator verson 3.1 cycle
sequencing kit (Applied Biosystems) on an ABI PRISM®
3100 genetic analyzer (Applied Biosystems).

To obtain 5" and 3’ flanking regions of the cDNAs, we
performed rapid amplification of cDNA ends (RACE)
using 5’ or 3’ primers complementary to the adaptors (5'-
AAGCAGTGGTATCAACGCAGAGT-3' or 5-ATTCTA
GAGGCCGAGGCGGC-3/, respectively) and species-spe-
cific nested primers, designed according to the cDNA
sequences obtained above (data not shown). PCR param-
eters were 94°C for 1 min; 30 cycles of 98°C for 20 s, 60°C
for 1 min, 72°C for 3 min; with a final extension at 72°C
for 10 min. We used TaKaRa LA Taq polymerases (Ta-
kara) for the reactions and reproducible bands were
identified, excised, and directly sequenced as described
above. We designed additional species-specific primers
that amplified overlapping regions of the entire cDNAs and
verified that their sequences were consistent with the
results from the degenerate RT-PCR and RACE
experiments.

Phylogeny Reconstruction

Amino acid sequences of GHR, SLR and PRL receptor
(PRLR) of vertebrates were retrieved from the GenBank
and aligned by ClustalW (http://www.ebi.ac.uk/clustalw/).
We used Phyml (Guindon and Gascuel 2003;
http://www.atgc.lirmm.fr/phyml/) and MrBayes (Ronquist
and Huelsenbeck 2003; http://www.mrbayes.csit.fsu.edu/)
software under the JTT+I+G+F substitution model fol-
lowing the results from ProtTest (Abascal et al. 2005;
http://www.darwin.uvigo.es/software/prottest.html) and
ModelGenerator (Keane et al. 2006; http://www.bioinf.
may.ie/software/modelgenerator/).

Protein Structure Prediction

We used the SOSUlsignal program (Gomi et al. 2004;
http://www.bp.nuap.nagoya-u.ac.jp/sosui/sosuisignal/

sosuisignal_submit.html) and NetNGlyc 1.0 server (http://
www.cbs.dtu.dk/services/NetNGlyc/) to predict N-terminal
signal peptides, transmembrane regions, and potential N-
glycosylation sites. To predict secondary structures, we
used the New Joint method (Ito et al. 1997;
http://www.cbrc.jp/papia-cgi/ssp_query.pl?query=seq). As
the New Joint server does not allow protein sequences
exceeding 500 amino acids as a query, we manually
trimmed excess C-terminal amino acids before submitting
sequences. Since it also does not permit a sequence with

undetermined amino acid (X) as a query, three Xs con-
tained within signal peptides of the opossum GHR
(NM_001032976) had to be removed prior to this analysis.
For the same reason, we could not use coho salmon GHR1
(AF403539), since it contains an X in the middle of the
extracellular domain.

Genomic Structure

Genomic DNA of lungfish and sturgeon were extracted
from muscle tissue by phenol-chloroform extraction.
Genomic DNA of eel (Anguilla japonica) was kindly
provided from elsewhere (see the “Acknowledgements”).
Species-specific primers were designed to sandwich the
region where the SLR-specific intron presumably exists,
and were used for both PCR with template genomic DNA
and RT-PCR. Products were run on 1% agarose gels,
stained by ethidium bromide, photographed on an ultravi-
olet (UV) transilluminator, and then sequenced.

Results

SLR is a Teleost-Specific Paralogue of GHR, Whereas
SL is Not a Teleost-Specific Paralogue of GH

By taking advantage of the available whole or draft gen-
ome sequences, we investigated genes surrounding the
GHR and SLR loci of vertebrates to determine if synteny is
conserved. Using a medaka GHR sequence (GenBank
accession number DQO010539) on scaffold (Scf) 627, we
found (by tblastx) that fugu and zebrafish have orthologues
on Scf 128 and chromosome (Chr) 21, respectively. Using
the medaka SLR sequence (DQO002886) on Scf 74, we
found orthologues on Scf 11 of fugu and Chr 8 of zebrafish.
All of these scaffolds/chromosomes contain sequences
similar to human genes located on Chr 5p12-13.1 (Fig. 2).
This well-conserved synteny suggests that not only the
GHRs, but also the SLRs of medaka, fugu, and zebrafish,
are orthologous to human GHR. Therefore, the teleost SLR
was likely acquired through a duplication of GHR. Con-
sidering that this duplication involved a rather large
chromosomal region (note that synteny of > 2 Mb of the
human chromosome is conserved), the FSGD would most
likely be the cause of this GHR duplication (Fig. 4).

We similarly analyzed synteny around the SL and GH
loci. GHs of fugu (U63807), medaka (AF134606), and
zebrafish (AJ937858) are located on Scf 7980, Scf 697, and
Chr 3, respectively. Although the fugu scaffold was not
sufficiently long for this analysis, both the medaka and
zebrafish GH loci showed conserved synteny with the
human GH cluster locus located on Chr 17q23-25 (Fig. 3).
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Fig. 2 The conserved synteny between the GHR and SLR loci.
Horizontal bars represent partial scaffolds/chromosomes whose
positions are indicated below (bp). Species names and scaffold/
chromosome numbers are indicated on the left. Colored boxes in the
bars indicate genes we manually annotated (see the “Materials and
Methods” section); yellow, GHR; green, SLR; blue, syntenic; and
grey, nonsyntenic genes. Gene names and their locations on human

Medaka SL (AY530202) and its fugu orthologue (predicted)
are located on Scf 186 and Scf 131, respectively. Zebrafish
SL (SLa; AY376857) is located on Chr 18. Their flanking
regions commonly contain sequences similar to human
genes on Chr 11q24 (instead of Chr 17q23-25), where no
apparent trace of SL can be identified (a missing ohnologue;
Postlethwait 2006). Importantly, another copy of zebrafish
SL (SLb; AY221126) is located on Chr 10 and its flanking
regions also contain sequences similar to human genes on
Chr 11q24. These observations support orthology relation-
ships within, but not between, GHs and SLs. Therefore,
unlike SLR, SL should have existed prior to the FSGD,
which produced SLa and SLb paralogs in teleosts. Whereas
the presence of SLb hass been reported for some teleost
species other than zebrafish (Zhu et al. 2004), we could not
find SLb in the genomes of medaka and fugu.

Isolation of Lungfish and Sturgeon GHRs

The teleost-specific GHR duplication suggests that the
hormone-receptor set of GH, SL, and GHR, but not SLR,
actually existed in the common vertebrate ancestor. For
further characterization of the receptor evolution, we
determined the GHR sequences of lungfish and sturgeon,
both of which, due to their phylogenetic position, are
expected to have retained this ancestral hormone-receptor
set (Fig. 1).
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chromosomes (if they are nonsyntenic) are indicated on top.
Arrowheads indicate 5-3' orientations of each gene. Note that
multiple genes surrounding the human GHR locus (C7, C6, PLCXD3,
OXCTI, LOC285636, FBX04, SEPPI1, ZNF131, and MGC42105) are
found in similar positions/orientations around both the GHR and SLR
loci of these teleost genomes

We constructed degenerate primers at regions con-
served in both GHRs and SLRs of vertebrates (in order to
amplify both, if they exist) and performed nested RT-PCR
using muscle cDNAs as templates. Muscles are one of the
organs in which both GHR and SLR are most strongly
transcribed in at least some teleosts (Fukada et al. 2004,
2005; Saera-Vila et al. 2005; Fukamachi et al. 2005).
Direct sequencing of the amplified products using
degenerate primers resulted in homologous gene sequen-
ces in both the lungfish and sturgeon (and also Polypterus
senegalus; data not shown), indicating that only a single
copy of GHR was amplified, as expected. We determined
entire cDNA sequences by RACE and termed them GHR
(instead of SLR), according to the evolutionary consider-
ations we have described.

The lungfish GHR (EF158850) consists of 602-606
amino acids (we found possible allelic polymorphisms that
cause several amino acid substitutions and insertions/
deletions; data not shown) and phylogenetic trees using
PRL receptors (PRLRs) as an outgroup placed it basal to
tetrapod GHRs (Fig. 4). The extracellular (hormone-bind-
ing) domain (ECD) of the lungfish GHR is most similar to
those of tetrapod GHRs, with 39% (guinea pig) to 47%
(pigeon) shared sequence identities, followed by teleost
SLRs, with 35% (halibut) to 41% (eel/carps) identities, and
teleost GHRs, with 31% (catfish) to 36% (eel) identities. It
is intriguing to note that the lungfish GHR is always more
similar to SLRs than to GHRs in all teleost species from
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Fig. 3 The lack of synteny between the GH and SL loci. Horizontal
bars represent partial scaffolds/chromosomes whose positions are
indicated below (bp). Species names and scaffold/chromosome
numbers are indicated on the left. Colored boxes in the bars indicate
genes we manually annotated; yellow, GH; green, SL; blue or pink,
syntenic; and grey, nonsyntenic genes. Gene names and their
locations on human chromosomes (if nonsyntenic) are indicated on

which both GHR and SLR have been cloned (i.e., salmon,
seabream, medaka, tilapia, catfish, and eel).

The sturgeon GHR (EF158851) consists of 571 amino
acids and phylogenetic trees supported its position basal
to both the GHRs and SLRs of teleosts (Fig. 4). This
result further supports the hypothesis that SLR is a teleost-
specific duplicated copy of the ancestral GHR. The ECD
of the sturgeon GHR is most similar to those of teleost
SLRs, with 39% (tilapia) to 54% (carp) identities, fol-
lowed by tetrapod GHRs with 39% (buffalo/guinea pig) to
48% (turtle) identities, and teleost GHRs, with 33%
(catfish) to 44% (rainbow trout) identities. The exception
is eel GHR (47%), which exceptionally retained SLR-like
features (see below). Again, the sturgeon GHR is always
more similar to SLRs than to GHRs in all teleost species.
The e-values of the blastp analyses also support that the
lungfish/sturgeon GHRs are more similar to teleost SLRs
than to teleost GHRs (data not shown). However, signif-
icantly more rapid diversification of GHRs than SLRs in
teleosts was not always supported by the relative-rate test
using the MEGA3 software (Kumar et al. 2004;
p = 0.000-0.216); the same test did support more rapid
diversification of both teleost receptors than sturgeon
GHR (p < 0.001; data not shown; Robinson-Rechavi and
Laudet 2001).

top. Arrowheads indicate 5'-3’ orientations of each gene. Note that
the syntenic genes around the GH locus (SCN4A) and those around
the SL locus (TIRAP, DCPS, STSGALA4, KIRREL3, ETSI, FLII,
KCNJ1, and KCNJ5) are located on different chromosomes in human.
On the other hand, conserved synteny is observed between the SLa
and SLb loci of zebrafish (bottom)

Lineage-Specific Features of the Vertebrate
GHR/SLRs: From Their Residual Comparisons

Molecular mechanisms of the GH-GHR interaction have
been extensively studied using mammalian models and
functionally important amino acids at the ECD have been
structurally, biochemically, and genetically determined. In
order to further characterize the lungfish and sturgeon GHR
sequences, we compared their equivalent residues with
those of other receptors (Figs. 5 and 6).

One apparent difference specifically found in teleost
GHRs is the lack of two of six disulfide-bond-forming
cysteines, which are perfectly conserved among tetrapod
GHRs and teleost SLRs. In the eel, however, both GHR
(AB180477) and SLR (AB180476) retain all six cysteines,
as do the lungfish and sturgeon GHRs. Therefore, after the
FSGD and the separation of eels from the other teleost
lineages, two of the six ancestral cysteines were lost spe-
cifically in teleost GHRs.

The WSXWS-equivalent motif (the Y/FGXFS motif)
seems conserved throughout the vertebrates (with the
exception of AGEFS in the eel GHR). We found that the
placental-specific Y222 also occurs in lungfish, though the
phenylalanine (found in sturgeon) still seems to represent
an ancestral state.
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Fig. 4 Phylogenetic trees of the vertebrate GHR/SLR/PRLRs as inferred from the (a) MrBayes and (b) PhyMI software. Posterior probabilities
or bootstrap values are shown at several representative nodes. Detailed subtrees of vertebrate PRLRs and mammalian GHRs were constructed but

are not shown. Numbers in brackets are GenBank accession numbers

GHR dimerizes when being activated, and residues
involved in the dimerization have also been identified (de
Vos et al. 1992). Several mutations have also been iden-
tified from human patients with GH-insensitive dwarfism
(Laron syndrome; Laron 2004), indicating that substituted
residues are functional (or substituting residues are mal-
functional). Some amino acids at these sites show strict
conservation (e.g., F96 and P131), while others are only
conserved within lineages (e.g., R161 and S201).

Asparagines N97, N138, and N182 (located after the
fifth beta strand, within the eighth, and after the tenth beta
strand in Fig. 6) were shown to be glycosylated and
important for GH binding in pig (Harding et al. 1994).
Whereas N97 is strongly conserved in all the receptors,
N138 and N182 seem not to be conserved among teleost
GHRs. Lungfish and sturgeon GHRSs retain all the three
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glycosylation sites, suggesting more derived states of tel-
eost GHRs.

There is an unpaired cysteine (C241) in the human GHR
that forms a disulfide bond during receptor dimerization
(Zhang et al. 1999). Although this bond was shown to be
dispensable, this cysteine is perfectly conserved among
mammalian, avian, and reptilian GHRs. Equivalent cyste-
ines are not found in amphibian GHRs, teleost SLRs, or
teleost GHRs. Instead, they have an unpaired cysteine
between the 13th and 14th beta strands, with the exceptions
of eel SLR and catfish GHR. Like the receptors of lower
vertebrates, the lungfish and sturgeon GHRs also have the
unpaired cysteine between the 13th and 14th beta strands.

Of the approximately 10 structural/functional residues
that actually participate in the GH-GHR interaction (Har-
ding et al. 1994; de Vos et al. 1992; Clackson & Wells
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Fig. 4 continued

1995; Clackson et al. 1998), those that contribute the most
to the binding affinity, W104 and W169, are perfectly
conserved in all the GHR/SLRs. This suggests that the
fundamental mechanisms for the hormone-receptor bind-
ing did not diverge during the receptor evolution. D164 is
also completely conserved, though it has received less
attention to date. R43 is one of the most interesting resi-
dues because it determines the binding specificity of human
GHR, which is restricted only to GHs of Old World pri-
mates (Souza et al. 1995; Yi et al. 2002). The arginine
(positively charged) at R43 interacts with aspartic acid
(negatively charged) at D171 of the primate GHs. GHs
(and also SLs) of other vertebrates have histidine (posi-
tively charged) at D171, which may cause ionic repulsion
against the R43. Instead of R43, GHRs of nonprimate
mammals and birds have leucine (hydrophobic), reptile and

Black seabream SLR (AF502071)
Gilthead seabream SLR (AY699980)
Medaka SLR (DQ002886)

Tilapia SLR (AY973232)
Turbot SLR (AF352396)
Atlantic halibut SLR (DQ062814)
Bastard halibut SLR (AB058418)

amphibian GHRs and teleost SLRs have glutamine (non-
charged hydrophilic), and teleost GHRs have methionine
(hydrophobic), all of which show strong (though not per-
fect) lineage-specific conservation. Considering that the
substitution of R43 dramatically changes the binding
specificity of the receptor (Souza et al. 1995; Yi et al.
2002), this lineage-specific conservation might indicate
lineage-specific functions of these receptors. Because the
lungfish and sturgeon GHRs have a glutamine at R43 as per
the reptile and amphibian GHRs and the teleost SLRs, this
should be interpreted as an ancestral residue.

All these ancestral reconstructions are supported by
PAML analyses (Yang 1997; data not shown). Importantly,
we found no amino acids unique to lungfish or sturgeon
GHRs at these functional sites, despite their unique hor-
mone-receptor set.
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Fig. 5 Comparison of
functional residues in the
extracellular domain of
vertebrate GHR/SLRs. Positions
of the compared residues are
indicated at the top. Vertical
lines indicate that the equivalent
residues are identical to those of
the human GHR. Missense
mutations of E44K, D152H, and
E224D are not shown to avoid
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Macaque (NM_001042667)
Squirrel monkey (AF339061)
Rabbit (AF015252)
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Guinea pig (AF247665)
Mouse (NM_010284)
Rat (NM_017094)

Tetrapods

redundancies. Existence/
absence of the SLR-specific
intron is shown in the far right
column (see also Fig. 7)
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Chicken
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Turtle
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Lungfish Lungfish

Sturgeon Sturgeon
Eel
Catfish
Atlantic salmon-1
Coho salmon-1
Rainbow trout-1
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GHR Rainbow trout-2
( ) Coho salmon-2
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Eel
Masu salmon
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Medaka
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Teleosts
(SLR)

Lineage-Specific Features of the Vertebrate GHR/
SLRs: From Comparisons of Their Predicted Secondary
Structures

The SOSUlIsignal program (Gomi et al. 2004) classified all
the receptors as proteins with N-terminal signal peptides
and single membrane-spanning domains (with the excep-
tions of seabream GHRs of black seabream and gilthead
seabream and carp SLR; Fig. 6a). This indicates that the
entire ECDs of the GHR/SLRs have been successfully
determined in most (if not all) of the species. The ECD of
placental GHRs is exceptionally long, which may reflect
the insertion of a novel exon in this lineage (exon 3; Dos
Santos et al. 2004).

The ECD of human GHR consists of two subdomains,
each of which contains seven beta strands that make two
beta sheets (de Vos et al. 1992). The New Joint program
(Ito et al. 1997) predicted this secondary structure well,
though relatively short strands tend to hamper reliable
prediction. In spite of low similarities among the
ECD sequences of the vertebrate GHR/SLRs (e.g.,
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Fig. 6 Summary of predicted secondary structures of the extracel-
lular domains of the vertebrate GHR/SLRs. (a) GHRs of 14
placentals, one marsupial, two avian, one reptilian, one amphibian,
one lungfish, one sturgeon, and 12 teleosts; and SLRs of 16 teleosts
were analyzed by prediction programs. Each letter represents one
amino acid; light blue H, pink E, or grey C indicates that the residue
is predicted to form alpha helix, beta sheet, or coil, respectively, by
the New Joint program (paler colors indicate that the prediction was
relatively weakly supported). The amino acid sequences were not
aligned; we eliminated all alignment gaps so that the alignment is
only ensured at the transmembrane domain (brown boxes on the
right). Color codes are as follows; green, signal peptides; purple,
conserved (paired and unpaired) cysteines; yellow, potential N-
glycosylation sites; indigo, four-residue segment connecting two
subdomains; and black, the WSXWS-equivalent motif. Dark blue
and black bars along the top indicate the positions of 14 beta strands
in the human GHR (Somers et al. 1994; and references therein) and
the exon specific to placental GHRs. (b) Amino acid alignment of
GHR/SLRs of representatives from mammal, bird, reptile, amphib-
ian, lungfish, sturgeon, and teleost. Major residues at each site are
indicated in red. Predicted signal peptides, transmembrane domains,
N-glycosylation sites, and other conserved residues/subdomains
were boxed with the same color used in (a). Functional prolines
in the box I motif (Goujon et al. 1994) and tyrosines (Hansen et al.
1996) are highlighted by gray



J Mol Evol (2007) 65:359-372 367

. P e — 22239000980800 S8 3 20SSEEELSNIS  SEO9039ES8CSEELE
8853 8 B8 032300003038  B88LEBBSERIRLERE 222328009808000 8 3 2gsghhhmenze  soccsssesoehsnt
8853 8 8 232805003238  E8E5S8E8SRIRT 885888555888528 & &  RKSCRRRRERAR  RRRARIRZRSEIRIRR
OY <3 v [$.8161818141¢,818.18.9) VLLVVLVVVVUVVUVY 9] ] e
LOLY o o QORIKEIREIREEOR DVLVVOVVVVVVVOVY O O 00
S s o o ORI & VOO OO 0 O O
OOVY o 14 OEEEEERREE & DOOVVDDVVDDOIX 9] 3
VOO 19 12 FEERARREAREE 6] K] O HOORRREREE O O
QOO o I3 FREREARREE 1] FIEEREE  EREERERO 4] O
QOO 12} IO RIEOREERLTE] B R R R O O
VOO0 QOO B SIS ISIISISIRISIS 1% S]] IR ERIR (RIS SRE 5] 9] o
OOV OOOE H| H HEROVVVVUURTDE] 1] e B e e . 9] o
BRI ) 1= 2] TR HODOOVUY BT ] R BB 0 53 9]
e Bfed 1 BB 1 1O OORIE ®| TEC HOOOOOOO FA R R R R VOVVVVVVVVVVOOIRE 0 o 0
EERE] ) BRI =} 19} MOOOOODOVOK [} DOROOU SRR A e ] o) 1)
LI efentest =% 251 1515 () e o DOVVVVVVVOX B ODODOUOC JOU b R R B ] el ] o) 12 1]
VOULTLIEEOUREE HEOE o DOLVVVLVVVVYD VOVLVVVVVOOT JOU B R BB B B R BB B 12} 12
OO HLOVOVOURE HRO0 o] 19 2] DOLVVOVVUL ) R R R R R R el el 2 124 2]
LLLLLEEEOVURMOUOR ouZo O 19 O DODDDOOC b EEREERRERERERE 13} ®| 12
OOOEEO 3 OOEO O O [s(81atalalatatetelelalalala! sl R IR [2]
DUVVOITTT OROOE QOTE ) 15 EIREIO0D0U O 0
VO VoL o OUTHE " I R R R 19 o 0
[ = 5] om OUTE H el e B ) = O 19 0
12 HEO  Om QU 15 b BB ] L O o i
120 EHEOUOL OOUK 2] |
Hem " [2H QOB 1] 151 ol
][] SISl 10 OO K] 13 o]
AR R IR ) [3] 1
BB R BRI 15 ol
ERIRR R R R AR R R BRI o [ o
(21215121 SR * 517 B 3] 19 15
IR VU 2515160 O 19
R ) EEOO O o
[ 5] HEO0 ] o
[8.9.9) O 19
) DOV O o C
VOOO )
VOVY
OOX
0OOY O
OO0 O
O O
o B e
O H DOVVVOY E el BB R BB = T
3] 3 VOOV I [ (881205 %1% B iy
o ststetsistete] M S
O = VOOOVO bd )3)
] " OEIE ] ] 15 I JOX
VO (OO O 12} ORIEEO0OR )N o
VOO0, 399 O 133 EEEREO00 5] oo O O
-, =189 O 19 JREOVDVY X JO! O O
oo joisiel) O o JOUCT J I oo O O O
o RO ] 1% LOVVOO JOOUT JO O O O
s S35, O 19 VOVVVOVUVVVOT JO 9] O
JO VOO0 ) O ORI JOOC )0 ) O O O
VOVDOVVVOC )0 V00O o O OREEEREEO00000 O )} O O &
O OORIOKIO0)! OO0 DOV K IR UK O O o BRI BRI o [ 0O
EEEEEREREEERO0 O 2] ] [QOROEED b O L[5 51 55 5 5 2 =R B ]
BIREIR] - R R O o g ! i (SIS JON O = JLR 551 S BRI R ] e
BRI R BRI R ] ) & El ) = [ 3333 TTIINT] BEEEIR R R )
1O =) 333 15[ [S5E) i I =] BRI
IR o ] (313] OREE ORI HOOUKOOOE  OOO00 [ [ | > BISIBI5 ]
HREREEOO0EEEORES ] ] HOOORRRE Bl R EEO00 [ o (33333333~ 33353335
RHEEREORRREROORY 15 Al ) IRIRIERIRER O EEEEREREEERE S O =
BIREEEOREE RO EHUEO 3] [$/7.313133/3/3/8 773 OO $3.9] L L o I O
EIRIRIRIEY RIRRIOR HORO S [sfaratatatatetatelatels fiaratataaiatela FBI T R R
DUDOVDODDVVOKKG RO [SE ! O slatatalatetatate [ S A HO00
[sfalalalsslelatatatalaiaial] EIEO0 0 0O 3] BIRIRT uid e 0
[3tatatety statatetateisla) OO0 O O i)
EO00D0DODODOD00 KOO S g o} OODOO00:
0000000000000 OO0, S A 3 0000
LUV DODODDOVY o 2] %] O 9] DUOOUC
EHOOORREERERE OO0 QU =} 0] 9] o DOOOT
=0 BRLO ! O O o
[59) ale 0 O O
o 0 )T ]
y O O 13 O
b o 0 o O S
VODO o 0 00O 12}
DO o ] VOVO 1=}
VOO 19 ] O {000 o] B
DO 19 0 O 2] 12}
O &) B 1]
oo O B H o 58 8
l&) 19 0 [E] 4] o OOORID DOC JOODOO 00
JC 9 19 9] 9] o OOORERE - o JOC JOU ORI 15]%)
JC OO0 o O I 9] O MEEN FHEEE T OUO000 0 EEEREIREE
)T 0OVO o O O 19} =B = Bl OEOOOR BRI
DOUO o ] OO Bl 19 BORE HREER0O O B BBfe] T BB
S 5.5.9) o O VUK 2] ] m mOOOSROm BRI R ]
) 00 VOO0 o O QO O 2 JOTOEROO0VVO0 BRI R R R R R R
T JmO0 o 0 o o DO I ORI 5| [9] JODOC JOVOL ORE ORI O
il JmO0 o 3 14 K ORI QOO QO VOTROVVVVOVOT) O [ o] o VOVDOC QOO = $19.9) JOOC
OO0VVOIMOU VOO =) ] EEEEREREOO00 OmRERITnOOOOOOREE B O 9] 19 OOIHOUVOD O O JOOT
OIZOVO  EMEOVVOOTOU QOEED ] ] R [ TR T ORI R R O o 19 VOTORVVOEO JOOT
VOUVDORKEOOOOTOL OORT ] 5] IS IS SIS ISISIS B I [ S IS 5 EREO0 o VOVVIVVVZOVY DOC
OOOOREIRMOOU .)ﬁ 1%} B 2] al BB R e BT e e I A [ [ B[S B O o 0oVOT OO0 OO
QOUOOURKKO O0m T BT 2} 3] HEEEE B TR TR EEEE R o 1= EREIRO R VORIO
< 1 ] S IR O HODU O BT W IR0 OF ME [ EE | Ol = IS5 S O OEO
L L 1 [ BT v 0 i il B EO0 BT o s B 0 _0LO ) ORO
RIS [ B0 ] ] ot [$.3.9) O o HLOROR UR O = B
[ ST [ [51219) ] ] = VO o EROR0 O O MK [
EREREO0ORERE O 3.9 ] O e ommin o ATTHLOO0 OR O EROR
RRERROOORBKEOKO LY 9] 9] e o VOVVY 9 O O i
OO o000 B O oo ] 15 SEDO00  HUUDLVUUL
JOOO VOO o O Ol LOmE [9] L 19] HOODOVOOC
OO0 OBO O O Ol 1 3] 9] OO0 DOODOOO0T
JOOO HOOO O O DO 00 00D O o QORI
RO 399 O LOOLUY OO0 ] ) LoUE ) (9] DORE VLY DOVUL
RO RO 00 FEC N D LOLOD U o OORIE I 0
] OEOE 00 HODLVVDUY ) VOO O 9] SRS B ERERO O 0
MO0 OLUK QURIKEOOOOOOU0 0 LORO O o V0K OR B EEEE EE B0
O IO Ol IEEIEIEO00 15 DOOR o o EIHOR IR R O] Ol
) EIEEIEO O =} O 0 19 [ FRCERMREARRRE  REE
0O 000K 19 IS SIS LT n B 51
121 = 0oLImO HOOE 00 H o 12} ] B e e ] REETEEROREEERE  ROR
3 IBIRISISISIS) SRS 1S3 ($13.9] 2 O 0 B m B NHEMH BETEITE] R RRIR]
9] EROOKBRRE  RIE OO0 GIERE R 0 H 00 12 T B 3 B 1 2 3 M
O O IVOOOOOE DOOVOOREE  HOO0 0 EE i 1=} oM S ERREE R E
9] 9] DODVOVOVY HOOOODOO OO FEEIE] = i B S (oI5 R
O 5 HOOOVVDVVLVODVOVY i) SIS 2] O o £ HORKERMOTD
O HOOOVVVVVVDODOX R Ik, ERE0O = 1<) O QU [ 5333)
O o VVVVVVVOLVY R L o | ] BRE0 i o ROUVDVVVVOO O B HOREOU
2] ] VODOY R EREARRERE R0 3] o ROO0D00OC 59} OmTEEEO OO0
2| B VOVOO VOO 815 [SE31212 5] Bl O 9] 9] TOOC OT )0 (& O 0
K K] O DUOVORKRUOVO B FIEO0 9] jjalalalatatalalalalala] JOVOVOVOUE
B C YOOVOUUUOOOOE B CO0 O Jstatatetatetatatatelals] slalstelaletelatelelate
8 O c J000000000000 B 0otd O B 900090000000 jislelstsiststatsieietats
O 9]
O O
O O £583E0000uoDOEE ssog £ 5 BETTAUYNESTEE £OFIIQETEEE.
5 8 0 ggofEsegsEraiEs  Sge¥ & 5 SEITIINSERRE  SGERSRESSEEE
S 8 9 38868205 ¢ 82 ¢ 2R 2 g 82828885 845°Tc2 w553
O 0 OO0 IRgero &= g 5 S 5 OESE=ERSres oy 58 5882
5 B SE 8 ER] §28285° 85 &  £9 38§
3] g <] 289808 <o ] E 8o
o 2 55555 8% 8 =5%
3] =C=o o =
@ == o o
o o
00 -t
LO0
im0 0
O (515155 1S
Q) [ S5kt
LU ] 128)
LY 13l B
OYj 0 12!
Q) = =
U =
o i3
Ol
OO o] 0
VOVVLDVOVKOO =
& 5 s g ¢
£ 8 5
5 2
@ BET soofile
458 ES NS
oF=ls
°% g
8
E & 8o
Ss555- 4k
E, g EH
c c =0
< 3 g 22
@ (3} oo
2 o o  Es
< = e =2
<
£ 2 : -
< @ N
ceazs : 3 e
55335 c = 38
ESFER (o] @B ]
FE85¢, = 2 " »n g
oSE > = 5
SE J2N 2
e << = |78 |2 ]
H o 5 ST S5 £
=3 3 =1 [0} [0] £
@ 3 a <O TN &
S o2 [T
'_ '_

Mammals

@ Springer



368

J Mol Evol (2007) 65:359-372

b I * ] ]
Human GHR  [M-D-LWQ-LLLTLALAGSSDRFSGSEATAAILSRAPWSLQSVNPGLKINSSKEPKFTHCRSPERETF JOHWTDEVHHGTKNLGPIQLFYTRRNT-QEWTQ 96
Chicken GHR  [M-D-LRH-LLFTLALVCANDSLSASDD-~-LLOQW-~~~--~--~—-———————~ PQISKHCRSPELETFH( 67
Turtle GHR ~ [M-D-LWQ-LLLILVLVCADESLSAGEV---ILGR-—~-~-------— ---PHTI SPEQETFYQ 70
FrogGHR  |MA--YWL-FWVTVILLYIDGSTAAIDVS---LGK--~-~------~~ ---PRIIKCRSPQOETIT 70
Lungfish GHR [M-D-RSICLLFFVILGQLRCSVTTEAPV-~~~-~—————————~ ---KKPRFITICRSPEQVTFT( 71
Sturgeon GHR  |MA--TRL-VFLSLVFGAMSVSVGEHLTTSEV-—~-~-~———————————— PPKRPYFVCRSPEQETFJ( 74
Medaka SLR ---DRAKSAPL--EPHFTHCVSRDLETFHVWSPGSFCNLSSPGALRVFYLKKDP---PLS 85
Medaka GHR PD-——————— == SKKVQLQKPPHLTACOVSTNMETFRJOSWKVGTFENLSDAGDLRLFYLNQNSLSAAPA 77
i s ST o T s T AT PITOTR
EWKEJPDYVSAGENW FNSSFTSIWIPYJKLTSN-GGT-V-DEKT}] VQPDPPIALNWTLLNVSLTGIHADIQVRWEAPRNADIQKGWMVLEYELQYKEVNETK 203
DWKE(JPDY ITAGENYC FNTSYTSIWIPY[J/KLANK-DEV-F-DE! VLPDPPVHLNATLLNTSQTGIHGDIQVRWDPPPTADVQKGWITLEYELQYKEVNETK 174
EWKEPDYITAGENJCVENTSYTSIWITYCVKLINK-DDV-L-DE. VQPDPPVGLNWTLLNTSLTRIHADIQVRWDPPPSADVQKGWITLEYELQYKEVNETK 177
NWTDPPDTITGGENYFSKTYTSIWVSY[J'KLVSE-DTE-F-DD VEPDPPMALNATVLNISLTRMRIDIQLSWEPPPSADVSSGWISLEYEVHIKEANESQ 177
DWLDPEY I -QGENG FNSSYCNVWI PY[CVKLLSK-EDVEY-DKY]] VQPDPPVNLNATLLNISRSGLYADILVSWEAPPSADVLNGWIALEYQLQYKDRNETQ 178
-WREJPDYSTAGEN. FNSTYTSIWIPYCNQLRSQIQDIVY-HOMJ VVPDPPVGLNNTLLNISQTGQHFDILIQWEPPPSADVKKGWISLVYEPQYRAINMSD 182
EWKEPEYNH-LNRECFFDTINHT SVWLP YW OLRSQNNVTYFNEEL VRPDPPVSLNATLLNVSPSGLSYDVMVSWEPPPSADVQAGWMRIEYEVQYRERNTTN 194
EWREPEY SRETPHQCF FNEEHTTVWTQYAVQLRSGDGAVVY -DEVF VEPDPPVGLNANTLLNVSLTGTHFDIMVTWRPPDSADVKMGWMTLSYEVQHRSLSSDH 186
|| I |
WKMMDPILTTSVPVYSLKVDKEYEVRVRSKQRNSGNGEF LYVTLPQ--MSQFICEEDF - YFPWLL]] IFGIFGLTVMLFVFLFSKQQ KMLT KIKGID 310
WKELEPRLSTVVPLYSLKMGRDYEIRVRSRQRTSEKFGEFJEILYVSFTQAGIEFV KIKGID 283
WRELEPMLTTVVPLYSLKLGRDYEIRVRSRORASEKFGGFSETLYVSLS--SISSV: KIKGID 284
WTILDKVQTKYLPVYALKTGKDYFARV] QLSNGKFGEFSDVLHIPLS-——-—— KIKGID 281
WEQVEHTVMTKLPVYSLVTGREYEIRVHCKORNFLKYGEF SNATYVVIPRNVK- KIKGID 283
WKPLEVERARYQSVYGLKTGMEYEIRVRCKOTASEKRF SEFSPHLYVYIPKVPT - KIMGID 285
WEALEMQPHTQQTIYGLQIGKEYEVHI QAFTKFGEFSPSIFMQVT: KIKGID 297
WEVTDLVSSTHRTLYGLQTNVNHEVRV! HGMTREGGE, KIKGVD 286
PDLLKEGKLEEVNTILAI----- HDSYKPEFHSDDSWVEFIELDIDEPDEKTEE----SDTDRLLSSDHEKSHS - ---N----LGVKDGDS--GRTSCCEPDILETDFNA 401
PDLLKKGKLDEVNSILAS----- HDNYKTQLYNDDLWVEFIELDIDDSDEKNRV - - - - SDTDRLLSDDHLKSHS----C----LGAKDDDS--GRASCYEPDIPETDFSA 374
PDLLKKGKLDEVNSILAN----- HDSYKPQLYNDNSWVEFIELDIDDPDEKTEG- - - -LDTDRLLGDNHCKSHN- - - -C- - - -LGVKDDDS--GRASCCEPDIPETDFSA 375
PDLLQRGKLDEVNSILAC----- HDHYKQQLYNDDPWVEF IELDLDDTDEKNEG- - -~ SDTDRLLGEEHRKNHN----C----LGVKDDDS--GRASCCEPDIPETDFSN 372
PDLLKNGKLDELNSVLAG----- SYASKPILYMDDTWVEFIEVDISDHDEKKHG----SDMEKLLGEDFPNSHN--~--C~-~---QGIKDDDS--GRDSCYEPDIPDMGDAL 374
PELLKKGKLDELNSILSG----- HHTFKPELYNDDLWVEFIELDIDDQDGRSNH----SDTHKLLGSENLNG-N----C----LNIKDDDS--GRASCYEPELPDSDTLD 375
SDLLKKGKLEELNF ILNGGSIGGLQTFSPDFYQDEPWVEFIEVDEEDADSREKEDDQASDTQKLLGPPQPISDHRTIRCS---ETIRHPEEVFGHGSCYNADRPEEDSKV 404
SRLLKKGKLQEFSSVL----— GGHPNLRPELYSD-PWVEFIDLDME-~---RONDRLTCLDTDCLVDSSSS-S-N--~--CSPLAASFRDHDS--GRSSCCEQDLLCDPNPS 378
NDIHEGTSEVAQPQRLKG-EADLLCLDQKNQNNSP--YHDACPATQQPSV-IQAEKNKPQPLPTEGAESTHQAAHIQLSNPSSLSNID QVSDITPAGSVVLSPGQKN 507
SDTCDAISDIDQFKKVTEKEEDLLCLHRKDDVEAL--QSLANTDTQQPHTSTQSESRESWPPFADSTDSANPSVQTOLSNONSLTNTDEMAQVSDITPAGSVVLSPGOKS 482
SDTCDGTSDIDQSKKTSEKEEDLLCLDQKDNNESH--ASPDDPTAQKPNTNIQSEDNQSKLPFADSIESTRPPVHTQLSNQSSGANTD QVSNVTPAGSVVLSPGQTN 483
SDTCDGTSDLGOTONVKENEADLLCLDEKSNSVSP--TNVSVPNTED--GSPKPEAEKTCPVAVSENEPTSLPVSAPISKMRAKPSMDE¥ALVSDITPAGRLLLSPGORM 478
DNPCHTTSDQPQEEKIKE---DLLCLKENDNISPSCFTSDSANSGDLLAEKRMPSDLTTGFVVSEESKSNRPPVHSQLSNQSSV-NLDF¥TQVSDITPAGGVLLSPGQQS 480
RSQAEA--————-——-—— REEKASLL---DSEGKAAHSSTADPSPPGRSHPGAT AEGASRSHPQIQSQLSSQSWV-NLD QVSNITPAGGVLLSPGQQS 460
OMDAPPPGQAGDKESSTE----—-— FAERTPALDRC-— === == === - == ——— oo PPVQTQTGTPQTWVNTDEMAQVSNVMPSGGVVLSPGQOL 474
PVHPPISDQI----====-—====—=——= TPNAPAC-—=—=— == === === —m——— e —m QPDSGAGVGVQSPGRDAT--MTOVCEVR-SGNVMLSPEEHL 433
KAGMSQCDMHP- -~ -—-——— EMVSLCQENFLMDNAY - --FCEADAKKCIPVAPHIKVESHIQPSLNQED TTESLTTAAGRPGTG-EHV--------— PGSEMPVPDY 595
KVGRAQCESCT--------- EQ------ NFTMDNAY - - -FCEADVKKCIAVISQEEDEPRVQEQSCNEDT¥FTTESLTTTGINLGASMAET - - ---PSMEMPVPDY 565
KRRRTQCEAYT---——-—-—— EPATIPCQPNFTTDYAY---FCEADVKKCIAVTSCDAVEPHAQEQSFNED! ---SSSEMPVPDY 572
KNENEECN--- -QPVIQHPANLNPDSPY---ICESAVTAFCAASKPRDTEASVKPNVI-DD 562
KVEKIESKPES------—-- REPSKYQMPAAVIGAY - - -TFEMDVKK- I --NNLSNESKPVLEKAFDQG ---HSSLMPVSDY 566
KIEKTAEAHSS----—-—-— PKTQKCQLAMTTDSAY - - - TSEMDAKNISATPSLNGNEPKV-——-—————2l- - = —————— TVSPYTVSEAP-- ---ASSVPPVSDY 530
RTQESTPASEHGAQTKGKQRDESGDMDGQROQKEPQFHLLVVDPEGSGYTTESNCWQNSTPSNSPNPGAG T-IPPPPVDIKPAASADANQLPYILPDCPQLVAPVADY 582
7777777777 DGGSIVELVEEEAGRKEA-----—-------VNADHKSYGEE-----HSGPKSPPSATPA-M- -~ - —————————— - — o ————————— 476
TSIHIVQSPQGLILNATALPLPD---——-—— KEFLSSCGEVSTDOLNKIMP 638
TSIHIVHSPOGLVLNATALPVPE---——--- KEFNMSC STDQLNKIMP 608
TSIHITHSPQGLVLNATALPVPD----—--— KEFMLSCGMVSTDQLNKILP 615
TSVHIINSPONLVLNTTVLP--N-—------— KEFLAPCGMMTPDQVNKVMK 603
TSIQMIDSQLSLIPKSDTLP--S----—--— RCFSKP- TPDQLSSFMP 606
TTVQAVDSQQSLLLNPSTLP--T----—--— KGTPMPAGMLTPEQLNSIMP 571
TVVQELDTHHSLLLDPTPIQSPPPCPSQPPLKT-QIPVD¥ITPDLLGNLLP 632
TMVDGVDTHNSLLLTT----SSTPSVHLTPLKQLPTPGS¥LIPDLLSSITP 523

Fig. 6 continued

approximately 35% identity between GHRs of tetrapods
and teleosts), the predicted secondary structures are all
strikingly similar (Fig. 6a).

However, we note that the length of linker residues
between the ECD and the transmembrane domain (TMD)
appeared to differ in a lineage-specific manner. Between the
bottom of the ECD and the top of the TMD (around Y230—
F247), there is a linker of 16 or 17 amino acids in placental
GHRs. The linker of teleost SLRs is perfectly conserved for
12 amino acids, and that of teleost GHRs is only nine amino
acids (with one exception, again in the eel, of 12 amino
acids). Marsupial and amphibian GHRs have relatively
divergent linkers of 13-20 amino acids (longer in more
derived species). We suspect that these differences are not
trivial because the linker length is rather divergent as a whole
(9-20 amino acids), yet is strictly conserved within each
lineage. Furthermore, the length of the linker characterizes
structural rigidity/flexibility of the ECD. A recent study
showed that GH-mediated rotation of the dimerized recep-
tors at an appropriate angle is necessary for its activation
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(Brown et al. 2005). Lungfish and sturgeon GHRs have
linkers of 14 and 12 amino acids, respectively; again similar
to the teleost SLRs and amphibian and reptilian GHRs.
Taken together, our residual and structural comparisons
did not reveal any unique features specific to the lungfish and
sturgeon GHRs. Instead, they always share identical residues
and similar structures with some or all of other GHR/SLRs.
The similarities (e.g., overall sequence similarity, position of
paired/unpaired cysteines, residues at R43, linker length,
glycosylation sites, etc.) are more often observed with teleost
SLRs and poikilothermic-tetrapod GHRs rather than with
homeothermic-tetrapod and teleost GHRs.

Genomic Structures of the Lungfish and Sturgeon
GHRs

In previous studies, orthology relationships of eel GHR/
SLR to other teleost receptors remained ambiguous (Fu-
kamachi et al. 2005; Ozaki et al. 2006). Although the
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species Lungfish Eel
primers IGf1/r 1Gf2/r 1Gf3/r  eSf/r eGf/r
templates g ¢ g ¢ g ¢ g9
IGf1 IGf2  IGf3
Lungfish GHR 5’ == = — AAA
“ IGr
eSf
Eel SLR5’ = — AAA
eSr
eGf
Eel GHR 5’ = —— AAA
eGr _
0.2 kb

Fig. 7 Absence of the SLR-specific intron from lungfish/eel GHRs
and also from eel SLR. Expected positions of the intron (gray arrows)
and approximate positions of the primers are shown on the left
diagram. Expected positions of the two conserved introns on the

present study clarifies their relationships (Fig. 4), the
phylogenetic position of the eel SLR is unexpectedly high
up in the gene tree and does not conform to its species
phylogeny when analyzed by both Bayesian and maxi-
mum-likelihood methods (compare the tree topologies
between the GHRs and SLRs of teleosts). For further
clarification of their evolutionary history, we investigated
whether the extra intron specifically found in teleost SLRs
(Fukamachi et al. 2005) is found in the eel receptors as
well. We also analyzed the lungfish and sturgeon GHRs in
this regard. Comparisons of RT-PCR and genomic PCR
products, however, showed that none of these receptors
have the extra intron (Fig. 7). We also found that the intron
does not exist in the predicted zebrafish receptors (Fig. 2).
Therefore, it is likely that the ancestral GHR did not have
this intron and SLRs later acquired it after the evolutionary
separation of eels, and probably Cypriniformes, from the
stem lineage that leads to more derived teleosts.

Discussion

Our present analyses on the GHR/SLR sequences of tet-
rapod and teleosts, and also the newly determined GHR
sequences of “living fossils” revealed for the first time that
(1) the SLR is a teleost-specific GHR paralogue acquired
most likely through the FSGD, (2) there are multiple
lineage-specific residues and structures among tetrapod
GHRs, teleost GHRs, and teleost SLRs, and (3) the lungfish
and sturgeon GHRs share similarities more often with
teleost SLRs and amphibian and reptilian GHRs than with
mammalian, avian or teleost GHRs (Figs. 2, 4, 5, and 6).

Clarification of the Nomenclature of Teleost Receptors

Currently, GHR and SLR of teleosts are often referred to as
GHR?2 and GHRI1, respectively (Saera-Vila et al. 2005; Jiao

lungfish GHR are shown by black arrows. Templates and primers
used for PCRs are shown above the gel image (c, cDNA; g, genomic
DNA). The same result was obtained from sturgeon (data not shown)

et al. 2006; Ozaki et al 2006). This nomenclature is basi-
cally (evolutionarily) correct according to our present
results, which showed that both the teleost GHR and SLR
are orthologous to the mammalian GHR (Figs. 2 and 4).
Also to be reconsidered, however, is that both GHRI and
GHR?2 in salmonids represent GHR (GHR?2), which reflects
another (4R) polyploidization (Moghadam et al. 2005;
Fig. 4). GHR1 was defined as SLR in salmon based on
functional evidence; SL binds to this receptor more
strongly than GH does (Fukada et al. 2005). In order to
further support this nomenclature which does not reflect the
evolutionary history (Mindell and Meyer 2001), further
evidence showing that SLR really functions as a receptor
for SL. would be necessary.

The clearest evidence would be provided through the
isolation of mutants or knockouts for SLR as has been done
for human, mouse and chicken GHRs (Agarwal et al. 1994;
Zhou et al. 1997; Laron 2004). Experiments using medaka
would be the most logical, because a medaka mutant for SL
has already been isolated and a gene-knockout method
(TILLING) has been established in this species (Fukamachi
et al. 2004; Taniguchi et al. 2006). Precise agreements
between the phenotypes of the ¢i mutant and a SLR
knockout, if obtained, would clearly establish that SLR is a
necessary and sufficient receptor for SL. Such in vivo
evidence will also exclude the possibility that the in vitro
binding data only reflect a less significant cross-reaction, as
has been shown between GH and PRLR in human (Somers
et al. 1994).

Ancestral Receptor for SL

Even if such functional evidence would support the validity
of the SLR nomenclature, the question would remain:
which receptor(s) did SL bind to before the FSGD (Fig. 1)?
The ancestral characteristics that are retained relatively
frequently in teleost SLRs (Figs. 5 and 6) and the in vitro
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binding of not only SL but also GH to the salmon SLR
(Fukada et al. 2005) seem to be suggestive in this regard.
Another intriguing result was recently reported for the eel:
while its SLR specifically binds to GH, its GHR binds to
both GH and SL (Ozaki et al. 2006; personal communi-
cation). These examples from two teleost species do not
contradict each other in that one of the duplicated GHRs
(i.e., salmon GHR and eel SLR) binds specifically to GH
while the other (i.e., salmon SLR and eel GHR) binds to
both GH and SL. Indeed, it appears that the SLR-like (i.e.,
probably more-ancestral) features are exceptionally
retained in eel GHR (e.g., overall sequence similarity,
linker length, conserved cysteines, etc.; Figs. 5 and 6).
Therefore, the presumed role of GHR in the vertebrate
ancestor was as a receptor for both GH and SL. After the
FSGD, this dual function might have been subfunctional-
ized in teleosts: one became the receptor for GH and the
other for SL.

This ancestral dual function (i.e., the GHSLR hypothe-
sis) may be testable through functional studies on “living
fossils”—representatives of basal lineages of the fish and
tetrapod lineages. However, the lungfish or sturgeon GHRs
would not necessarily have retained the ancestral function
precisely as it was when their lineages arose in the Devo-
nian period, since their hormone-receptor relationships
may also have diverged in a lineage-specific manner during
more than 400 million years of evolution. Therefore, the
results obtained from such experiments could not be
interpreted as strong evidence either for, or against, this
hypothesis. Nevertheless, in vitro binding of their GHRs to
both GH and SL, as is the case for the salmon SLR and eel
GHR, and consequent activations of mutually different
target genes (if obtained) would most parsimoniously
support the GHSLR hypothesis. The species from which
we cloned GHRs (P. dolloi and H. dauricus) and the spe-
cies from which GH/SL sequences were reported (P.
annectens, A. gueldenstaedtii, and A. transmontanus) are
unfortunately different. In order to avoid the lineage- and
species-specific artifacts (e.g., R43 of primate GHRs dis-
cussed in the “Results” section), more cloning work (or
purification of the hormones from these endangered fish)
would be necessary to rule out this possibility.

An alternative hypothesis for the ancestral receptor for
SL would be that the common vertebrate ancestor had a
novel receptor for SL that is not orthologous to the GHR/
SLRs. The sequence of this putative receptor should not
differ drastically from those of GHR/SLRs because SL is
the closest relative of GH. Although our degenerate
primers did not amplify such a sequence in any of the three
ancient fish examined, an examination of their complete
genome data or extensive screening, using, for example,
the two-hybrid system, might reveal the existence of such a
receptor(s). However, if these fish had retained such a
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receptor(s) during evolution, this putative receptor would
have been retained in at least some of the available tetrapod
and teleost genomes—but that does not seem to be the
case.

Receptor for SLb and Future Subjects To Be Addressed

The FSGD duplicated not only GHR but also GH and SL.
While the duplicated GH seems to have been lost from the
genomes of medaka, fugu, or zebrafish, the duplicated SL is
retained in zebrafish (Fig. 3) and some other teleost lin-
eages (Zhu et al. 2004). The duplicated SLa and SLb have
limited sequence similarities (<50%) and the receptor for
SLb has not been investigated in any species to date. The
additional polyploidization in salmonids (Moghadam et al.
2005) and a possible loss of GHR in turbot (Saera-Vila
et al. 2005) makes generalizations about the overall hor-
mone—receptor relationships in teleosts difficult. These
inconsistent hormone-receptor sets and their distinctive
expression patterns and functional diversifications (e.g.,
Fukada et al. 2004; Zhu et al. 2004; Fukada et al. 2005;
Fukamachi et al. 2005; Saera-Vila et al. 2005; Very et al.
2005; Jiao et al. 2006; Ozaki et al. 2006; Zhu et al. 2007)
would indicate that the in vivo roles of these orthologous
genes are not necessarily identical in all teleost species.
Our results aid in the clarification of the evolutionary his-
tories of these hormones and receptors. Comparative
studies with divergent species (e.g., medaka and zebrafish)
using not a part but the entire hormone-receptor set of this
gene family, would be necessary to provide reliable clues
about past and present functions of these hormones and
receptors.
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