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Cloning and characterization of a microsatellite in the mitochondrial
control region of the African side-necked turtle, Pelomedusa subrufa
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Abstract

The nucleotide sequence of the African side-necked turtle mitochondrial control region and its flanking tRNA genes was
determined. This 73% A+T-rich region is 1194 bp long. Several conserved motifs involved in the regulation of the mitochondrial
genome replication process, including one conserved sequence block (CSB1), and three termination-associated sequences were
identified. The most remarkable feature found in this control region was the presence of six microsatellite-containing tandem
repeats between the CSB1 motif and the tRNAPhe gene. The potential usefulness of this microsatellite sequence for population-
level studies is enhanced by its unique localization in the maternally inherited mitochondrial molecule. © 1998 Elsevier Science
B.V. All rights reserved.
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1. Introduction events (Schlötterer and Tautz, 1992). Microsatellite loci
appear to be widely distributed every 20–30 kb, on

Simple-sequence repeats (SSR) or microsatellites are average, throughout each eukaryotic genome (Stallings
DNA sequences made up of 2–5 bp tandemly repeated et al., 1991). Di-, tri- and tetra-nucleotides have been
units. Microsatellites may be classified according to found in a wide variety of eukaryotes (Hamada et al.,
the nature of the repeat as perfect, imperfect (i.e. 1982), as well as in the chloroplastic genome of plants
interrupted) or compound (adjacent tandem repeats of ( Vendramin et al., 1996). However, only one case of a
a different sequence) ( Weber, 1990). Interrupted micro- microsatellite in a mitochondrial genome has been
satellites seem to be less variable than perfect ones, and reported (Hoelzel et al., 1993).
within the latter, longer repeats are expected to be more Microsatellites are rapidly becoming the molecular
polymorphic (Jarne and Lagoda, 1996). Although the marker of choice among evolutionary biologists who
exact molecular mechanisms that create variation are are interested in the analysis of population genetic
not completely understood, the extremely large number structure (Jarne and Lagoda, 1996). The relative techni-
of alleles exhibited per microsatellite locus is generally cal ease with which microsatellites can be obtained from
believed to be generated in a stepwise fashion (Valdes a particular species (by constructing a genomic library
et al., 1993) by DNA polymerase replication slippage of the species of choice, sequencing microsatellite-con-

taining clones, and designing PCR primers in the flank-
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of their relatively conserved flanking regions vertebrates, it is localized between the tRNAPro and
(FitzSimmons et al., 1995; Rico et al., 1996; Zardoya tRNAPhe genes (Fig. 1). The overall base composition
et al., 1996). This circumstance allows, through use of of the L-strand of the control region is A: 38%; T: 35%;
versatile PCR primers, screening of homologous micro- C: 19%; and G: 8%. In other vertebrates, this region
satellite loci in a large number of species without having includes the origin of H-strand replication, the sites of
to invest time and expense in constructing and screening initiation of both H- and L-strand transcription, and
genomic libraries anew for each species (Zardoya several motifs involved in the regulation of both pro-
et al., 1996). cesses. Interestingly, only one (CSB1) of the three con-

Here, we report the unusual presence of a microsatel- served blocks involved in the initiation of the DNA
lite sequence within the mitochondrial control region of synthesis ( Walberg and Clayton, 1981; reviewed in
the African side-necked turtle (Pelomedusa subrufa). Saccone et al., 1991) could be identified unambiguously

at the 3∞ end of the control region (right domain)
(Fig. 1). Additionally, an interrupted poly-C stretch,

2. Materials and methods remarkably similar to the CSB2 motif ( Walberg and
Clayton, 1981; reviewed in Saccone et al., 1991), was

Mitochondrial DNA (mtDNA) was extracted from found close to the 5∞ end of the control region ( left
the liver of an African side-necked turtle, P. subrufa, as domain) (Fig. 1). However, the homology and function-
described previously (Zardoya et al., 1995a). After ality of this stretch with the CSB2 motif remain tentative
homogenization, intact nuclei and cellular debris were due to its unusual position. Additionally, up to three
removed by low-speed centrifugation, and the purified termination associated sequences (TASs) involved in the
isolated mitochondria were subjected to a standard premature termination of the H-strand replication
alkaline lysis procedure to extract their DNA. The (Doda et al., 1981), as well as several copies of the
isolated mtDNA was cleaved with the ApaI restriction conserved palindromic motif 5∞-TACAT-3∞ (Saccone
enzyme and cloned into the pGEM-7f vector. A 5 kb et al., 1991) were found at the 5∞ end of the control
ApaI fragment spanning the end of the cyt b gene to region (Fig. 1). No significant secondary structures that
the end of the ND1 gene was found to contain the are found in other species (Saccone et al., 1991) could
control region, as was expected based on the conserved be identified in the left and central domains.
mitochondrial genome order in vertebrates. Cloned
DNA was used as template for Taq Dye Deoxy

3.2. A microsatellite associated with longer tandemTerminator cycle-sequencing reactions (Applied
repeatsBiosystems Inc.) following the manufacturer’s instruc-

tions. Sequencing was performed with an automated
The most striking feature of the African side-neckedDNA sequencer (Applied Biosystems 373A Stretch).

turtle mitochondrial control region is the presence ofSequences were obtained using both M13 universal
six direct repeats localized in tandem at its 3∞ end,sequencing primers and three control-region-specific
downstream of the CSB1, and close to the tRNAPheoligonucleotide primers (Tur d-loop F: 5∞-
gene (Fig. 1). Each repeat is composed of a 45 bpGGCTATGTACGTCGTGCATTCAT-3∞; Tur d-loop
sequence that is followed by a (TA)n microsatellite withF1: 5∞-TCTTCAGGATACCTCTGGCTGTT-3∞; Tur d-
a variable number of repeat units (n=10–11). In totalloop R: 5∞-GGAAGTGTATATGAAACCTGGGT-3∞).
the repeat region is 453 bp long (i.e. it covers 38% ofThe sequences obtained from both strands were about
the whole control region). Interestingly, the microsatel-450–550 bp in length, and each sequence overlapped the
lite in the repeat that is closer to the tRNAPhe gene isnext contig by about 150 bp. In no case were differences
longer than the others, and it is composed of thein sequence observed between the overlapping regions.
repetition of seven 5∞-TAA(TA)3–4-3∞ units (Fig. 1). ThisSequence data were analyzed by use of the GCG pro-
type of pattern, in which the rightmost repeated unit ofgram package (Devereux et al., 1984). The nucleotide
the array shows the higher level of divergence, has alsosequence reported in this paper has been deposited in
been found in several mammals (e.g. Fumagalli et al.,the EMBL/GenBank data libraries under the accession
1996 and references therein), and this could be relatednumber AF039066.
to an asymmetry in the replication of the mtDNA
molecule (Fumagalli et al., 1996). The presence of direct
repeats is normally associated with the 5∞ end of the3. Results and discussion
control region (e.g. Wilkinson and Chapman, 1991;
Zardoya et al., 1995b; Fumagalli et al., 1996), and has3.1. General features of the turtle mitochondrial control
also been reported at the 3∞ end, either between theregion
CSB1 and CSB2 motifs, or between the CSB2 and the
tRNAPhe gene (e.g. Fumagalli et al., 1996). ExtensiveThe control region of the African side-necked turtle

mitochondrial genome is 1194 bp long and, as in most size heteroplasmy in mitochondrial control regions due



151R. Zardoya, A. Meyer / Gene 216 (1998) 149–153

Fig. 1. Control region of the African side-necked turtle (Pelomedusa subrufa). (a) Nucleotide sequence of the 1430 bp mitochondrial genome fragment
that includes the control region and flanking tRNA genes. Several conserved motifs were identified along this fragment: two conserved sequence
blocks (CSB-1 and CSB-2), three termination-associated sequences (TASs), and six direct repeats. (b) Scheme showing the relative position of the
above-mentioned control region features. The striking presence of a TA-microsatellite at the end of the direct repeats (R1–R6) is particularly
emphasized.

to variation in the number of these tandem repeats has (Hoelzel et al., 1993). These species had a (AC )n GT
microsatellite not associated with longer tandem repeatsbeen reported in many species (e.g. Edwards and Wilson,

1990; Wilkinson and Chapman, 1991; Fumagalli et al., in the 3∞ end of the mitochondrial control region. These
mitochondrial microsatellites showed extensive hetero-1996). However, it is highly unusual to find a microsatel-

lite associated with these mitochondrial control region plasmy with up to three length variants present in single
individuals (Hoelzel et al., 1993).tandem repeats. So far, mitochondrial microsatellites

have been reported only in two elephant seal species Tandemly repeated sequences in the mitochondrial
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control region of non-microsatellite-type are believed to presence of typical control region conserved motifs
(CSBs and TASs).be generated by strand slippage and mispairing during

replication (e.g. Fumagalli et al., 1996), which is the (2) A (TA)n microsatellite embedded within a larger
repeat was found in the 3∞ domain of the controlsame mechanism proposed for the generation and main-

tenance of microsatellites (Schlötterer and Tautz, 1992). region. Our results support that the origin of the
microsatellite pre-dated the generation of the largerMoreover, it has been suggested that the presence of

microsatellites may be, in some cases, directly related to tandem array.
(3) A microsatellite in a mitochondrial genome may bethe origin of longer tandem repeats ( Wright, 1994). The

fact that each of the larger repeats contains a conserved a potentially very useful molecular marker for pop-
ulation genetic studies. Further research focusingsequence and microsatellites of different sizes suggests

that the origin of the microsatellite pre-dated the genera- on the 3∞ end of the control region of vertebrate
mitochondrial genomes is encouraged by thistion of the tandem array. The discovery of microsatellites

in the mitochondrial control region may provide insight finding.
into the birth, evolution and properties of microsatel-
lites. For instance, the strict Mendelian inheritance of
microsatellites (e.g. Queller et al., 1993) is no longer Acknowledgement
tenable in light of this finding.
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