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6 EVOLUTIONARY TRENDS IN THE ECOLOGY OF
NEW WORLD MONKEYS INFERRED FROM A
COMBINED PHYLOGENETIC ANALYSIS OF
NUCLEAR, MITOCHONDRIAL, AND
MORPHOLOGICAL DATA

Inés Horovitz and Axel Meyer

The New World monkeys (Order Primates, Infraorder Platyrrhini) arose soon after
African primates invaded South America some 25 million years ago (Figure 6.1; see
Hoffstetter 1972, 1980; Martin 1990; Kay et al. 1997). They subsequently underwent
extensive taxonomic diversification coupled with a spectacular adaptive radiation in
diet, body size, feeding strategy, and mode of locomotion (Table 6.1). They now
include roughly 80 of the 250 primate species worldwide (Mittermeier 1996). New
World monkeys range throughout tropical America from Southern Mexico to north-
ern Argentina, inhabiting steamy lowland rain forests, cool cloud forests, seasonally
arid dry forests, and sun-baked savannas. They feed on fruits, leaves, nectar, plant
exudates, insects, and vertebrates; some are specialized to exploit one or a few of
these resources, while others are more generalized (Table 6.1). Most species are active
diurnally, except the owl monkey, which is nocturnal over most of its geographical
range. Within genera, most species and subspecies are allopatric and show relatively
little ecological and morphological divergence from each other, in contrast to the
striking divergence seen between genera in these respects. Body size ranges from 120
g to 12 kg; genera characterized by smaller body sizes tend to have more species and
subspecies than larger-bodied forms.

Inferences about the adaptive radiation of New World monkeys from ecological
and morphological points of view have been derived, so far, solely from phylogenies
based on morphological data. Recently, however, extensive data on DNA sequences
have become available (e.g., see Schneider et al. 1993, 1995; Harada et al. 1995;
Horovitz and Meyer 1995; Meireles et al. 1995) that — when added to existing mor-
phological data — change the inferred phylogeny of New World monkeys and pro-
vide a basis for new inferences about their pattern of morphological and ecological
evolution. In recent years, several authors have published phylogenetic studies on
subsets of New World monkeys, including Goeldi’s monkey, marmosets and tamarins
(callitrichins, including 5 genera and 32 spp.), howler, spider, woolly, and woolly spi-
der monkeys (atelines, including 4 genera and 14 spp-), sakis and uakaris (pithecins,
3 genera and 9 spp.), owl and titi monkeys (2 genera, 19 spp-), and capuchin and
squirrel monkeys (2 genera, 7 spp.), as well as some studies that encompass the whole
radiation (e.g., see Rosenberger 1992; Ford and Davis 1992). This paper presents an
evolutionary synthesis based on an analysis of combined DNA sequence and
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Table 6.1. Species diversity, body size, diet, ecological distribution, and range of the genera of New World monkeys.
Numbers of " ’ . e e
S i i e Body mass (g) Diet abitats Geographical distribution
Subfamily/tribe Genus Common nan spp. (subspp.) y (g grap
Atelinae Ateles Spider monkey 4(le) 7,456 - 9,000 Fruits and leaves [all, mature forest with Southern Mexico to central
continuous canopy Bolivia and Brazil
Brachyteles Woolly spider (1) 9,450 ~12,125 Fruits and leaves Coastal forest Restricted area of Atlantic coastal
: monkey forest of southeastern Brazil
Lagothrix Woolly monkey 2(5) 5,750 - 10,000 Fruits and leaves; Tall, maturc forest with Central Colombia and a small portion g'l
in exceptional conlinuous canopy of Venezuela, throughout the upper S
populations, insects Amazonian basin, as far south as northern Bolivia =
=
Alowatta Howler 7(14) 4,550 - 11,352 Leaves and Iruits Wide spectrum of Southern Mexico Lo northern Argentina S
monkey cavironments, including S
savannas 2
3
S T— e e e O S S—— oo g g <
Pithecinae Callicebus Titi monkey 10(16) 800 ~ 1,325 Fruits and cither Primary forest, varillal Central Colombia and Venezucela to \'“]
inscets or leaves and palm forest Paraguay ]
as secondary food §
Pithecia Saki 5(8) 1,515 - 2,795 Fruits High primary forest of Western Amazonian region and Guianas ~.
terra firme =
=
Cucajao Uakari 2(6) 2,740 - 3450 Fruits Floodplains Weslern portion of Amazonian basin &
Chiropotes Bearded saki 2(4) 2,510 - 3,100 Fruits High primary forest of Eastern portion of Amazonian basin a
terra firme =
S S S S s e S e e e By A SR e e 0%
Aotinac Aolus Owl monkey 911y 690 - 1,232 Frails; insects Most forested areas and Panama to northern Argentina, <
and leaves as a marginal arcas absent in Guyana Shield and o
complement Atlantic and Paranense forests ~
Cebini Cebus Capuchin 5(21) 2,220 - 3,868 Fruits and Primary and secondary Belize to northen: )
monkey animals forust <
Saimiri Squirrel monkey 2(12) 695 932 Fruits and Primary and secondary Southern Costa Rica and Panama, g
animals forest central Colombia to Bolivia =
and northeastern Brazil =
e e S P e o . B e - e —— - .
Callitrichini Callimico Goeldi's monkey 1) 483 502 Dict virtually unstadied, — Shrub and bambouo forest Patchy distribution in the upper =
includes insccts Amazonian basin; southern Colombia =)
1o northern Bolivia %
Callithrix Marmoset 15(19) 182 - 429 Eruits, insccts ferra firme, disturbed Eastern Bolivia and Brazil south 2
and exudates areas, sccondary forest of the Amazon and cast of the 0
Rio Madiera
Cebuelln Pypmy (1) 126 - 130 Insects and exudates Edges and interiors of Upper Amazonian basin, southern
marmosct Fruits are a minor onally inundated Colombia to northwestern Bolivia
compaonent of their diet mature floodplain forests and
mature nonfloaded forests
Leontopithecus Lion tamarin 34 535 - 015 Fruits, insects and Coastal lowlands, inland og Four restricted arcas in southeastern
plant exudates low inundated forests Brazil in the Atlantic coastal region and
the Rio Parana basin
Suguinis Lamarin 12(33) 103 - 740 Tnsects, [ruits, nectar terra firme, disrurbed arcas, Amazonian basin, Panama, and =
and plant exudates secondary forest; somie northwestern Colombia °
species i primary forest —
¥ Sources: systematics from Mittermeier etal (F88); body mass from Fleagle (985, i piep g and Ford and Duavis (1992), peoprapluc distibation from Wolthen (F981) and Ry lanks cUal, (1993); sources tor habitats and dicts in text
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their colonization of the New World (Fleagle 1988). We will use the concept of a “key
innovation” or “evolutionary novelty” (Mayr 1963) when there is evidence that the
function of the character in question is related with the use of a new range of
resources or substrates.

Phylogenetic analysis

Analyses were conducted at the generic level, including all 16 genera of living
New World monkeys plus one fossil taxon (Cebupithecia sarmientoi) from the late
Miocene of La Venta, Colombia (Stirton 1951; Stirton and Savage 1951). Genera of
New World monkeys are well-defined clades, whereas the limits between species
and/or subspecies are frequently debated (see Napier 1976; Groves and Ramirez-
Pulido 1982; Hershkovitz 1983, 1984; Ayres 1985; Thorington 1985; Ford 1994). There
are at least 16 fossil genera of New World monkeys, most of which are very poorly
known. The phylogenetic position of most of these is currently under debate, and
when included in a cladistic analysis the large number of missing characters increases
dramatically the number of most parsimonious trees (Novacek 1992, 1994; Forey, pers.
comm.). We chose to include only one fossil taxon in our analysis, because its mor-
phology is fairly well known and its phylogenetic position relatively stable.

Outgroups used included representatives of each of the major lines of haplorhi-
nine primates: tarsiers (Tarsius), macaques (Macaca) /proboscis monkeys (Nasalis), gib-
bons (Hylobates), humans (Homo sapiens), and the fossil anthropoids Aegyptopithecus,
Apidium, and Parapithecus from the Oligocene deposits of Fayum, Egypt (Simons 1962,
1965, 1987; Kay et al. 1981; Fleagle and Kay 1987). Molecular and morphological char-
acters about which we had no information were scored as missing data.

Data used to estimate phylogeny included (i) nuclear DNA sequences of the &-
globin genes (Schneider et al. 1993) (261 informative characters) and interphotore-
ceptor retinol-binding protein (IRBP) gene, intron 1 (Harada et al. 1995) (332 infor-
mative characters); (ii) a fragment of the mitochondrial DNA sequence for the 165
ribosomal gene (Horovitz and Meyer 1995) (142 informative characters); and (iii) 66
morphological characters (see Appendix 6.1).

DNA sequences were aligned using Malign 1.89 (Wheeler and Gladstein 1993).
Phylogenetic analyses were conducted using the heuristic algorithm in PAUP 3.1.1
(Swofford 1993), with 50 replicate searches based on randomly assembled starting
trees. Bootstrap values for the cladogram obtained from combining all three data sets
(the “total evidence” tree [Kluge 1989; Kluge and Wolf 1993]) were also obtained
using PAUP, with 1,000 replications. Aligned sequences are available from the authors
upon request. Entire gaps were considered characters, not each position separately,
and gaps with different lengths were coded in sections. For example, given the align-
ment in Table 6.2, we distinguish three different gaps at (a) positions 5-7; (b) posi-
tions 8-11; and (c) positions 12-15. We cannot know how many events actually hap-
pened to create these gaps; there is a large number of possibilities. For example, each
position could have undergone a single deletion event, gaps (a) and (b) could have
been a single deletion event in taxa B and C, and so forth. According to the auxiliary
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Table 6.2. Hypothetical DNA sequences used to illustrate the scoring of gaps in this study (see text).

Taxon Position Gap(s)

111133113122229222
123456789012345678901234567

A CTTAAACCGTGTGTACTGGGAGAACCA

B CTTA— —— —— CTGGGAGAACCA abc
C CTTA— —— —— CTGGGAGAACCA abc
D CTTAAAC —— CTGGGAGAACCA bc
E CTTAAAC —— —— CTGGGAGAACCA bc
F CTTAAAC—— CTGGGAGAACCA bc
G CTTAAACCGTG—— CTGGGAGAACCA ®
H CTTAAACCGTG CTGGGAGAACCA €
i CTTAAACCGTGTGTACTGGGAGAACCA

principle of Hennig (1966), we will consider gaps in the same positions across taxa
as homologous, and therefore we consider gap (a) homologous in B and C, gap (b)
homologous in B through F, and gap (c) homologous in B through H. Distinguishing
gaps (a), (b), and (c) allows us to capture all the information contained in these align-
ments and to postulate the smallest number of insertion-deletion events possible,
which is the most parsimonious hypothesis.

Nuclear, mitochondrial, and morphological data sets were analyzed separately
first, and yielded different topologies (Figure 6.2). The consistency index (CI) and tree
length (L) excluding uninformative characters for each tree were as follows: CI = 0.63,
L =1,208 for nuclear DNA; CI = 0.47, L = 506 for mitochondrial DNA; and CI = 0.56,
L =214 for morphological data. The nuclear and morphological trees showed the
most congruent topologies. Analysis of the combined data yielded a single tree with
CI=0.57 and L = 1,953 (Figure 6.3). The topology of this tree is not perfectly congru-
ent with that resulting from any of the individual data sets, but most branches of the
total evidence tree are supported by each data set. There are three notable exceptions:
nodes 1, 2, and 3 are not supported by morphology. When morphological characters
are excluded, the topology of the total evidence tree does not change.

Support for the position of the owl monkey (Aotus) relative to the capuchin and
squirrel monkeys (Cebus, Saimiri) and the callitrichins is weak; the completely
resolved topology presented (Figure 6.3) is only two steps shorter than the grouping
of the owl monkey with either callitrichins or with the capuchin-squirrel monkey
dyad; the bootstrap tree does not resolve these relationships. The degree of incon-
gruence between data sets (Mickevich and Farris 1981; Kluge 1989) was very low. The
total number of extra steps in the total evidence tree was 833, accounted for by incon-
gruence within and between data sets. Only 25 of them were generated by incon-
Sruence between data sets, which represents 3% of the total incongruence. All three
data sets required extra numbers of steps when overlaid on the total evidence tree,
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a. e-globins and IRBP nDNA  b. 165 mitochondrial rDNA ¢. Morphology
Callithrix Callithrix Callithrix
Cebuella Cebuella gebuglla
. aguinus
galln?uco Callimico Leontopithecus
agutie ; Callimico
Leontopithecus Saguinus =
Aotus Leontopithecus arts
Cebus
Cebus Callicebus Aotus
__5_‘3’_’13!} _______ Saimiri Chiropotes
Catcgjan Pithecia t Cacajao
Chiropotes wineca | Pithecia
Dithecia Cebus Cebupithecia®
Callicebus Aotus 3 Callicebus
Alotmttq Alouatta 9| Alouatta
Lagothrix . 5 Brachyteles
Brachyteles Liagotiini 1 — | Lagothrix
Ateles Ateles Ateles

Figure 6.2. Cladograms obtained with (A) nuclear sequences of e-globins (Schneider et al. 1993) and IRBP
(Harada et al. 1995) and realigned with Malign, CI = 0.63; (B) 165 mitochondrial rDNA sequences (Horovitz
and Meyer 1995), CI = 0.47; and (C) morphological characters, CI = 0.56 (see Appendix). All consistency
indices shown exclude uninformative characters. The number of unambiguous character-state changes is
indicated above each branch. Callitrichins are demarcated with a bracket, and pithecins and atelines are
enclosed in a dashed and a solid rectangle respectively. Indicates fossil taxa.

43 Callithrix
12 W Cebuella

59 1 b~ Callimico
a [ Saguinus
87% ;

Leontopithecus
55 19 —— Cebus
87%\1) 76% —  Saimiri
Aotus
| Cacajao :
Chiropotes
Pithecia
Cebupithecia
it} Callicebus

4 61% —— | Alouatta
80% 33 ] Lagothrix

9% L
_179 19% >——— | Brachyteles
100 Ateles
30 Homo
52 rﬁ%_: Hylobates
89% L Macaca
9 t Aegypto;:jthecus*
3 Apidium
97% t

Parapithecus
Tarsius

Callitrichins

Cebids

b1}
97%

Pithecins

Atelids

Atelines

Outgroups

Figure 6.3. Total evidence cladogram (CI = 0.57) obtained by analyzing the combined data from e-globins
(Schneider et al. 1993), IRBP (Harada et al. 1995), 16S mitochondrial rDNA (Horovitz and Meyer 1995), and
morphology (see Appendix). Nodes 1, 2, and 3 have no support from morphological characters. Numbers
below the branches indicate level of bootstrap support; numbers above branches indicate branch lengths-
The bootstrap tree does not support nodes 4 and 5. The two basal platyrrhine clades are Atelidae and
Cebidae. The consistency indices, excluding uninformative characters, for the various data sets overlaid
on the total evidence tree are 0.63 for nuclear DNA sequences, 0.46 for mitochondrial DN A sequences, and
0.53 for morphology. "Indicates fossil taxa.
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relative to the most parsimonious tree based on each data set separately: the nuclear
data set required 1 extra step (relative to 593 informative characters), the mitochon-
drial 11 extra steps (relative to 142 informative characters), and the morphological 11
extra steps (relative to 66 informative characters).

Different data sets reflect a shared history, so the phylogenetic signal they con-
tain should be the same, even if it is obscured by homoplasy. On the other hand, the
distribution of homoplasy is likely to be different for each data set, given that each is
subject to different constraints (e.g., those pertaining to function). If the data sets are
combined, the signal common to all of them is more likely to overwhelm the homo-
plasy than if each is analyzed separately. Whether this approach is always appropri-
ate is still being debated (Kluge 1989; Kluge and Wolf 1993; Donoghue and Sander-
son 1992; Bull et al. 1993; Chippindale and Wiens 1994; Huelsenbeck et al. 1994; Funk
et al. 1995; Lockhart et al. 1995; see Chapters 1 and 2 in this volume).

Adaptive radiation in the New World monkeys

The implications of our phylogeny for the interpretation of the adaptive radia-
tion in the New World monkeys are summarized below. The taxonomic categories
used are based on Rosenberger (1979) but adjusted to the topology of our preferred
tree: the family Atelidae includes subfamilies Atelinae and Pithecinae; its sister-
group, the family Cebidae, includes subfamilies Aotinae and Cebinae. The last group
contains the tribes Callitrichini and Cebini. For each group, we discuss the implica-
tions of our phylogeny for systematic relationships and for shifts in diet, habitat,
mode of locomotion, and positional behavior.

Atelidae (Atelinae, Pithecinae)

SysTeEMATICS — This clade is supported by two unambiguous morphological char-
acters: reduction of the pterygoid fossa, and a deciduous lower second premolar with
arounded outline, derived from a mesiodistally elongated outline. The basal
dichotomy of this clade implies that the Atelinae and Pithecinae are sister clades.

Atelinae (Alouatta, [Ateles, {Lagothrix, Brachyteles}])

SystEmaTICS — The Atelinae includes the howler (Alouatta), spider (Ateles), woolly
(Lagothrix), and woolly spider (Brachyteles) monkeys. Three morphological charac-
teristics are unique to atelines among New World monkeys: a prehensile tail covered
ventrally by bare skin with friction ridges; a large body; and very long forelimbs rel-
ative to hindlimbs (Erikson 1963). They show some convergences with extant apes in
their limb and trunk morphology, which are probably related to suspensory habits
(Erikson 1963). An ateline can support the weight of its suspended body by its tail.

Relationships within atelines in the nuclear DNA sequence data trees (e-globin
genes, Schneider et al. 1993; y-globin genes, Meireles et al. 1995; IRBP gene, Schneider
etal. 1995 and Harada et al. 1995) and the total evidence tree (Figure 6.4) differ from
Previous hypotheses: (Alouatta, [Ateles, {Lagothrix, Brachyteles}]). We designate the clade
composed of the latter three taxa as the Atelini. Members of this group have only four
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Specialized incisors and canines

Claws instead of nails

Search for hidden insects

Cebidae

High reliance
on insects

Molars with low relief
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LN
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Prehensile tail with 1
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[J Search for embedded insects
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Callimico
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tamarin
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Leontopithecus
lion tamarin
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capuchin
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Aotus 2
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Figure 6.4. Overlay of key morphological innovations and inferred ecology of ancestral forms on the total-
evidence phylogeny. Synapomorphies are indicated by vertical bars and associated labels; special symbols

(see legend) mark the autopomorphies.
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lumbar vertebrae and large ratios of hindlimb relative to trunk length. In contrast,
howler monkeys have a mode of five lumbar vertebrae and a smaller hindlimb ratio,
falling roughly between that of the owl and the capuchin monkey (Erikson 1963), plus
a number of other postcranial synapomorphies listed by Ford (1986b).

Erikson (1963) found several derived characters shared by spider monkeys and
woolly spider monkeys, including a reduced thumb (nearly or completely absent as
an external character) and a very short lumbar region relative to thoracic length (in
terms of both the number and size of individual vertebrae). A few dental characters
are shared by the howler monkeys and woolly spider monkeys, such as the presence
of a mesoloph on the first upper molar (Zingeser 1973; MacPhee et al. 1995). A
mesoloph is a large crest, usually presented as an adaptation for masticating leaves.
Under the total evidence tree topology, these characters are either homoplasies, as in
the case of characters shared by the howler and woolly spider monkeys, or of ambigu-
ous optimization, as in the case of those shared by the spider and woolly spider mon-
keys. In other words, the latter are either convergences between the spider and woolly
spider monkeys, or have been acquired by the common ancestor of spider, woolly,
and woolly spider monkeys and secondarily lost by the woolly monkey.

HABITAT, LOCOMOTION, AND POSITIONAL BEHAVIOR — Howling monkeys show the broad-
est geographic distribution, from southern Mexico to northern Argentina, and through-
out the Amazon basin. They are everywhere sympatric with at least one other genus of
atelines, except in the most extreme parts of their range. The woolly spider monkey has
the most limited distribution; it occurs in a restricted area of the Atlantic coastal forest
of southeastern Brazil. The spider and woolly monkeys occur primarily in tall mature
forest with continuous canopy, while howler monkeys are found in a wide range of envi-
ronments, including savannas (Fooden 1963; Fleagle and Mittermeier 1980; Peres 1990,
1994; Soini 1990; Stevenson et al. 1994). All atelines occur in the middle and high levels
of the canopy (Mendel 1976; Fleagle and Mittermeier 1980; Gebo 1992; Defler 1995).

The spider, woolly, and woolly spider monkeys have the ability to travel with
bimanual locomotion (brachiating and arm-swinging) and use relatively small sup-
ports. In contrast, howlers do not brachiate and travel mostly quadrupedally along
bigger supports. Spider and howler monkeys climb frequently; when feeding, all gen-
era use suspensory positions aided by their prehensile tail (Mendel 1976; Fleagle and
Mittermeier 1980; Cant 1986; Gebo 1992).

DieT - Atelines are highly folivorous and frugivorous. Howlers are the most foliv-
orous (Milton 1980) regardless of whether they are sympatric with other atelines; the
woolly spider monkey is intermediate; and spider and woolly monkeys are mostly
frugivorous (Strier 1992). Reports from different study sites are consistent for most
species, except in the case of the woolly monkey, for which contrasting degrees of
insectivory have been reported from different sites. Lagothrix lagothricha lugens was
studied in La Macarena, Colombia and reported to eat mostly fruits (60% of its diet
throughout the year) (Stevenson et al. 1994). Insects were the second most commonly
consumed resource throughout the year (23%) at this single location. This degree of
insectivory is unusually high for atelines, and contrasts sharply with reports on a
population of L. I. lagothricha in Vaupes, Colombia. According to Defler (1995), the
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diet of this population included 94.6% leaves and fruits (with no report on the remain-
der). Munioz Duran (1991) stated this same population included insects in its diet, but
provided no percentages. In the headwaters of the Urucu river in Brazil, L. I. cana fed
on insects during only 0.1% of its feeding time (Peres 1994).

Pithecinae (Callicebus, Pithecini)

SystemaTICS — This clade is supported by the following unambiguous morpho-
logical synapomorphies: trigonid and talonid of subequal height in the lower second
molar, and presence of prehypocrista on the first upper molar derived from a primi-
tive condition of absence (subsequently reversed in living pithecins). Pithecines
include the titi monkey (Callicebus) and the pithecins. The latter include four genera:
Cebupithecia (fossil pithecin), sakis (Pithecia), uakaris (Cacajao), and bearded sakis (Chi-
ropotes). The sister-group relationship between the titi monkey and pithecins is sup-
ported by the total evidence, morphological and nuclear DNA trees. Rosenberger
(1979, 1981, 1984) and Horovitz (1995, in prep.) presented hypotheses based on mor-
phology that are closest to our total evidence tree; however the owl monkey (Aotus)
does not appear to be sister to the titi monkey as Rosenberger (1984) suggested, but
instead appears to be sister to the callitrichins, Cebus, and Saimiri (Figure 6.4).

Callicebus

HABITAT AND POSITIONAL BEHAVIOR — Titi monkeys are found from central Colombia
and Venezuela to Paraguay. The yellow-handed titi (C. forquatus) forages in different
varieties of varillal and palm forest (Kinzey et al. 1977; Kinzey 1977a). Varillal is a
non-flooded forest with a relatively closed canopy, abundant vertical tree trunks (a
characteristic from which its name is derived), and reduced undergrowth; it com-
prised 60% of the territory of the troop studied. While the yellow-handed titi forages
mostly in the second and emergent stories of the forest canopy, C. cupreus discolor
(sensu Mittermeier et al. 1988) is generally found lower in the forest (Kinzey 1978).

The most common feeding posture of the yellow-handed titi is sitting except if
feeding on berries, when it adopts an erect posture, with the torso parallel to the ver-
tical trunk and the feet inverted and powerfully adducted, with the pollex grasping
the trunk (Kinzey 1977a,b).

Diet ~ Titi monkeys are primarily frugivorous but different species complement
their diet in different ways. The second leading food item for yellow-handed titis (C.
torquatus) are insects (14%) (Kinzey et al. 1977; Kinzey 1977a; Kinzey 1978), whereas
that for C. brunneus and C. personatus are leaves (Kinzey 1978; Kinzey and Becker 1983;
Wright 1989). C. brunneus spent 10 to 15% of its time sitting and scanning for insects
and, although data on actual insect feeding bouts are unavailable, the success rate
was apparently low (Wright 1989). The masked titi (C. personatus) has not been
observed to eat insects (Kinzey and Becker 1983).

The yellow-handed titi opens hard husked fruits by placing them in the corner
of its mouth, and cracking them with the canines or the premolars (Kinzey 1977a).
Titis catch insects in the air, leaves, or at ant nests; only on rare occasions have they
been observed to go down to the ground to obtain insects.
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Pithecini (Cebupithecia, [Pithecia, {Cacajao, Chiropotes}])

SysTEMATICS — Pithecini includes sakis (Pithecia), uakaris (Cacajao), bearded sakis
(Chiropotes), and the fossil Cebupithecia. The monophyly of this group is supported by
the presence of a diastema between the lower canine and second incisor, a sharp lin-
gual vertical edge on the lower canines, a reduction of the lower third molar relative
to the length of the fourth premolar, proclivious upper incisors, and a high
preparacrista on the upper third premolar. Monophyly of living pithecins is further
supported by crenulated molar enamel and loss of a lingual cingulum on the fourth
upper premolar. A sister-group relationship between uakaris and bearded sakis is
supported by a buccolingual enlargement of the fourth upper premolar relative to
the first molar, and the loss of the prehypocrista on the first upper molar.

HABITAT, LOCOMOTION, AND POSITIONAL BEHAVIOR — Pithecines live in the Amazon basin
and the southern margin of the Orinoco river. Uakaris are always associated with
floodplains, whereas bearded sakis live in areas of high primary forests of terra firme
(relatively high non-flooded ground) (Fontaine 1981; Ayres 1989). Sakis seem to be
the most flexible of the pithecins: they are found primarily in untlooded forest and
they are sympatric over a large part of their range with bearded sakis; they overlap
with uakaris in narrow bands of flooded forest (Peres 1993).

The white-faced saki (Pithecia pithecia) is predominantly a leaper, while bearded sakis
and uakaris are primarily quadrupedal. Data on posture while feeding is more limited,
but sakis frequently cling to trunks of trees or lianas, and uakaris and bearded sakis
apparently feed more commonly in pronograde quadrupedal postures, and less com-
monly adopt hindlimb suspensory postures (Ayres 1986; Fleagle and Meldrum 1988).

Bearded sakis are upper- and middle-canopy frugivores (Norconk and Kinzey
1994); sakis have more varied habits. Where the white-faced saki (P. pithecia) co-occurs
with bearded sakis (e.g., in the Guianas), it frequently feeds in the understory and
the lower part of the canopy (van Roosmalen et al. 1988; Kinzey and Norconk 1993).
On the other hand, where the white saki (P. albicans) occurs in the absence of other
pithecines (e.g., in Amazonia), it is found mostly in the higher levels of the canopy
(Peres 1993). Uakaris live in floodplains and surrounding terra firme, and descend to
the ground when water levels drop in order to eat seeds and seedlings (Ayres 1989).

Dier - Pithecins are frugivores (at least 85% of feeding time), but differ from other
frugivorous New World monkeys in exploiting unripe fruits, with a harder pericarp and
a pulp with lower sugar content and more defensive compounds than ripe fruits. Bio-
chemical analysis of the fruits eaten by sakis indicate that the preferred species have a
high lipid content (47 to 50%) and therefore a high nutrient value (Kinzey and Norconk
1993). Pithecins also consume leaves and arthropods (Ayres 1986, 1989; Kinzey 1992).

Pithecins are seed predators, digesting the seeds they ingest. Their strategy con-
trasts with that of seed dispersers (e.g., spider monkeys) who feed on and digest the
pericarp, in most cases the mesocarp, and/or the aril, and either drop the seed before
ingestion or allow the seed to pass through their tract undigested. Seeds of consumed
fruit are frequently protected by a hard covering (pericarp, usually a hard mesocarp,
and/or sometimes the seed coat). Pithecins can break the hard husk with their spe-
cialized canines, discard the pericarp, and then masticate the seeds, which are actually
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the protein-rich part of the fruits. Bearded sakis feed on the immature seeds of a large
number of species that are consumed when mature by sympatric spider monkeys.
The black-bearded saki (Chiropotes satanas) can open fruit with pericarp as much as
15 times harder than those opened by the black spider monkey (Ateles paniscus); and
the average crushing pressure (2.77 kg mm™) exerted by the black-bearded saki is
significantly greater than that (0.03 kg mm™) exerted by the black spider monkey
(Kinzey and Norconk 1990). The average crushing resistance of seeds consumed by
the black-bearded saki (7.2 £ 0.7 kg) is significantly smaller than that of seeds swal-
lowed by the black spider monkey (17.1 + 2.6 kg) (Kinzey and Norconk 1990). The
hardness of fruits that sakis open is intermediate between those opened by spider
monkeys and bearded sakis (Kinzey and Norconk 1990, 1993).

Cebidae (Aotus, [{Cebus, Saimiri}, Callitrichini])

SysTEMATICS — This clade is composed of owl monkeys (Aotus), capuchin monkeys
(Cebus), squirrel monkeys (Saimiri), and the callitrichins, which include Goeldi’s mon-
key (Callimico), marmosets (Callithrix and Cebulla), and tamarins (Saguinus and Leon-
topithecus). The monophyly of callitochins has rarely been questioned, but its rela-
tionships to other New World primates has been widely debated. Rosenberger (1979,
1981, 1984) suggested that capuchins (Cebus) and squirrel monkeys (Saimiri) were
sister-groups based on morphology; the same conclusion was reached by Schneider
et al. (1993) based on nuclear DNA sequences, and by us (Figure 6.4) based on an
analysis of combined molecular and morphological data. The only previous studies
thathave placed owl monkeys (Aotus) in Cebidae (as defined here) are Schneider et
al. (1993), Harada et al. 1995, and Horovitz (1995), based on nuclear DNA sequences
and morphological data. Our total evidence analysis (Figure 6.4) indicates that Aotus
is sister to the cebids and callitrichins.

Aotinae (Aotus)

HapitaT — Owl monkeys are widespread from Panama to northern Argentina, and
live in most forested areas except in the Guyana shield and the Atlantic and Para-
nense forests. They are also successful in certain seasonally arid environments, such
as the Chaco in southern Paraguay and north-central Argentina. Owl monkeys are
the only nocturnal members of Anthropoidea, including both Platyrrhini and
Catarrhini (see Figure 6.1).

Dret - Aotus nigriceps in Cosha-Cashu National Park, Peru, eats mostly small ripe
fruits, which it complements with insects and leaves; flowers and nectar are also con-
sumed (Wright 1989). Owl monkeys forage for insects at dawn and dusk and during
moonlit nights. They grab insects out of the air with one hand while walking along
the branches of tall trees. Owl monkeys ingest more insects on a daily basis than sym-
patric titi monkeys, based on data from fecal samples (Wright 1989).

Owl monkeys are successful in certain habitats that are marginal for other pri-
mates, such as the Chaco. There it is sympatric with the black howler (Alouatta caraya)
and, at least in some areas, the brown capuchin (C. apella) (M. Di Bitetti pers. comm.).
Some aerial predators present in Amazonian Peru (e.g., harpy eagles and crested
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eagles) are rare in the semi-arid Chaco, where the great horned owl is common
(Wright 1989). Owl monkeys are not strictly nocturnal in Paraguay (Wright 1989) or
Argentina (Arditi pers. comm.). They can commonly be seen foraging for 1 to 3 hours
during the day; traveling and feeding can occur at any time of the dayv or night. In
Paraguay, leaf-eating is higher (46%) than in Peru in winter, when fruits are scarce.
During the spring, insect and flower consumption is very high (Wright 1989).

Cebini (Cebus, Saimiri)

SysTEMATICS — Capuchin monkeys (Cebus) and squirrel monkeys (Saimiri) are sis-
ter taxa. This is supported by at least two morphological characters: the fourth upper
premolar is wider than the first molar and the vomer is exposed in the orbit. Capuchin
monkeys have a prehensile tail which can support the entire body weight for short
periods of time in adults (10 to 15 s) and for longer periods (> 30 s) in juveniles (M.
Di Bitetti and C. Janson, pers. comm.).

HABITAT, LOCOMOTION, AND POSITIONAL BEHAVIOR — Cebuts is one of the most widely
distributed genera of New World monkeys, ranging from Belize to northern
Argentina. Saimiri occurs in Costa Rica and Panama, and ranges from central Colom-
bia to Bolivia and northeastern Brazil. Cebus provide two of the few cases of con-
generic sympatry: the tufted capuchin (C. apella) co-occurs over part of its range with
the white-fronted capuchin (C. albifrons) or the wedge-capped capuchin (C. nigrivi-
tattus). Capuchin and squirrel monkeys are both found in primary and secondary rain
forests (Terborgh 1983; Boinski 1987, 1989b).

Capuchins show great variability in feeding heights in the forest (Terborgh 1983).
Data on locomotor behavior of the white-throated capuchin (C. capucinus ) indicate
that it is highly quadrupedal (54%), and secondarily climbs (26%) and leaps (15%).
Its positional behavior includes sitting (44%), standing (31%), and reclining (13%)
(Gebo 1992). C. Janson (pers. comm.) has occasionally observed the tufted capuchin
(C. apella) suspended from its tail when feeding on spiny palms.

Saimiri oerstedii typically forages and travels at about 5 to 10 m above the ground,
on thin branches (< 5 cm diameter). Squirrel monkeys are basically quadrupedal, with
a lower incidence of climbing or leaping and clinging on vertical thin substrates
(Boinski 1987, 1989b). Its most common feeding postures are sitting, hanging by the
hindlimbs, and sitting in tripod stance (i.e., on its hindlimbs while maintaining its
tail as a third point of support on the substrate) (Boinski 1989b).

Dier - Capuchins and squirrel monkeys are mainly frugivorous but also rely
heavily on other animals as source of protein (Janson and Boinski 1992). Capuchins
also rely on other resources toward the margins of their distribution. For example, in
some areas in northern Argentina, their primary resource is bromeliads; in other
areas, they feed heavily on fruits during one season, but switch to insects at other
times (Brown and Zunino 1992).

Capuchins can open hard husked fruits by holding them in their hands and biting
them open, using incisors for smaller fruits (1-3 cm) and premolars or molars for larger
fruits (Janson and Boinski 1992). Capuchins are a pre-dispersal seed predator of Carini-
ana micrantha, an emergent member of the Brazil-nut family Lecythidaceae (Peres 1991)
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Callitrichini (Leontopithecus, [Saguinus, {Callimico, (Callithrix, Cebuella)}l)

SysTEMATICS — The Callitrichini is composed of five genera: Goeldi’s monkey (Cal-
limico), the marmosets (Callithrix, Cebuella), and the tamarins (Leontopithecus, Sagui-
nus). Characteristics of this group are that they are among the smallest of the anthro-
poids, and in absolute terms have the smallest brain volumes; they bear claws on all
manual and pedal digits except the hallux. Within this group, the only point on which
both morphological and molecular analyses agree is the sister-group relationship
between the two genera of marmosets. The most common hypothesis based on mor-
phology alone is that Goeldi’s monkey is the earliest diverging taxon of callitrichins
(Rosenberger 1981, 1984; Ford 1986b; Kay 1990; this paper). On the other hand, analy-
ses based on DNA and amino-acid sequences (Schneider et al. 1993; Horovitz and
Meyer 1995), immunological data (Sarich and Cronin 1980), and cytogenetic data
(Seuanez et al. 1989) suggest that Goeldi’s monkey is closely related to the marmosets.
Some studies suggest the tamarins are monophyletic, but others (including our total
evidence analysis, see Figure 6.4) do not.

In addition to the unreversed characters mentioned above, Callitrichini is sup-
ported by (i) reduction of the size of the pterygoid fossa from reaching the base of the
skull to a shallow space between the lateral pterygoid process and the splinterlike
medial process; (ii) loss of the third molar; (iii) loss of hypocone on the first upper
molar; and (iv) two offspring at a time (from a primitive condition of one). All four
characters are reversed in Goeldi’s monkey. No unambiguous morphological char-
acters support nodes 1 and 2 (Figure 6.3). Morphology strongly indicates a basal posi-
tion for Goeldi’s monkey within callitrichins, but this signal is overwhelmed by mol-
ecular characters indicating its position as sister to the marmosets. Marmosets share
several specializations such as staggered lower incisors of equal height which dis-
play meso- and distostyles, mesiodistally compressed canines, and buccolingually
compressed deciduous lower incisors.

Lion tamarins have acquired certain specializations, unique among anthropoids,
that have been associated with their outstanding manipulative abilities; they have
long and slender arms and hands, and partially webbed middle fingers that they use
to probe for and extract prey (Coimbra-Filho 1970b; Hershkovitz 1977).

HABITAT, LOCOMOTION, AND POSITIONAL BEHAVIOR — Callitrichins range from south-
eastern Costa Rica (tamarins) to Bolivia (Goeldi’s monkey and marmosets) and
southeastern Brazil (lion tamarins). Traits all callitrichins share are the exploitation
of low levels of the canopy and understory, and the ability to cling onto big trunks
and large branches for feeding and/or traveling purposes. The marmoset Callithrix
and the tamarin Saguinus occur in “terra firme” and are generally absent from flood-
plains. They use disturbed, edge, or secondary growth forest, except some species
of Saguinus that also live in primary forests (Rylands 1986; Garber 1993). The habi-
tats of the pygmy marmoset (Cebuella) are the edges and interiors of seasonally inun-
dated mature floodplain forests, although it also occurs in mature non-flooded for-
est (Moynihan 1976b; Soini 1993; Hernandez-Camacho and Cooper 1976). Lion
tamarins live in coastal lowlands, inland Atlantic forests, and low inundated forests
(Coimbra-Filho 1970a,b; 1976). The forests occupied by all species except L. chrysopy-
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s chirysopygus have abundant epiphytic bromeliads, a common foraging substrate
(Rylands 1993). Goeldi’s monkey lives in scrub forest, mostly low and young second
growth and in bamboo forests (Moynihan 1976a; Izawa 1979b; Pook and Pook 1981;
Buchanan-Smith 1991), although it is also found in primary forest (Christen and
Geissmann 1994).

Saguinus fuscicollis, S. geoffroyi, S. mystax, and S. midas midas travel mostly quad-
rupedally, climbing, and leaping (Fleagle and Mittermeier 1980; Garber 1991; Garber
and Pruetz 1995). In S. fuscicollis, 20% of leaps involve moderate- to large-sized verti-
cal trunks, which are rare in S. geoffroyi and S. mystax (Garber 1991). Lion tamarins
seem to have a pattern of locomotion like that of Saguinus excluding S. fuscicollis
(Coimbra-Filho and Mittermeier 1973). Cebuella and Callimico leap frequently to and
from vertical trunks (Kinzey et al. 1975; Moynihan 1976a,b; Pook and Pook 1981).
Cebuella spends 77% of its feeding time clinging onto trunks (Kinzey et al. 1975). Cal-
lithrix probably has very similar locomotor and positional habits, although no quan-
titative data are available for this genus.

DieT — Marmosets and tamarins feed on plant exudates (sap, gum, resin) as a com-
plement to fruits and insects (Sussman and Kinzey 1984; Ferrari and Lopes Ferrari
1989; Soini 1993). Marmosets possess specialized incisors which they use for gouging
holes in tree bark and directly stimulating the flow of gum, and spend a considerably
higher percentage of their time feeding on this resource than tamarins. Leontopithects
rosalia has also been observed to chew on bark to stimulate gum flow (Peres 1989),
despite the fact that it does not possess specialized incisors. Saguinus relies on natural
damage to the bark or the activity of wood-boring insects to obtain gums.

Lion tamarins forage for insects in a manipulative fashion and catch mainly non-
mobile prey concealed in palm crowns, bromeliad axils, wooden crevices, and under
bark (Garber 1992; Rylands 1989). Saguinus forages for insects on the surface of
branches and in vine tangles and foliage under the canopy and Saguinus fuscicollis in
addition explores tree-trunk bark (Garber 1992). Information on the diet of Goeldi’s
monkey is limited, and there are no year-round field studies. It feeds on insects in a
strategy similar to that of S. fuscicollis and nigricollis (Garber 1992).

Evolutionary patterns of ecological specialization

The first cladogenetic event in the platyrrhine ancestral lineage gave rise to two
successful and diverse groups, the Atelidae and Cebidae (Figure 6.4). No obvious basal
morphological innovations appeared in these two clades that allowed them to exploit
new resources. Atelidae is comprised of atelines (howler, spider, woolly, and woolly
spider monkeys), pithecins (sakis and uakaris), and the titi monkey; Cebidae is com-
prised of the owl, capuchin, and squirrel monkeys, as well as the callitrichins. The most
ngticeable ecological difference between the Atelidae and Cebidae is the highly her-
bivorous diet of virtually all species in the former, and a higher reliance on insects in
t_he latter (Rosenberger 1981, 1992). In the Atelidae, pithecines and atelines generally
feed at least 94% of the time on plants (Kinzey 1978,1992; Rosenberger and Strier 1989).
The known exceptions are one population of Lagothrix lagothricha and one of Callicebus
forquatus that feed on insects a high proportion of the time (23 and 14%, respectively).
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Cebidae is characterized by a higher consumption of insects than most Atelidae,
The heavy consumption of insects by owl monkeys has been attributed to their activ-
ity at night when insects are most active (Kinzey 1992). However, insect consump-
tion also seems to be high in areas where owl monkeys are more active during the
daylight hours (Wright 1989). The primary food for squirrel monkeys is sometimes
insects (Boinski 1989a; Janson and Boinski 1992). Capuchins rely less on insects than
squirrel monkeys do; for example, the tufted capuchin (C. apella) spends about half
of its day manipulating substrates and ingesting prey (Janson 1990) and obtains
approximately 16% of its energy from insects (Janson 1985; Janson and Boinski 1992).
Callitrichins also rely heavily on insects; according to most reports, they spend more
than 13% of their time foraging for insects.

Besides diet, Atelidae and Cebidae generally differ in body weight. Body weight
varies from 0.13 to 3.8 kg in Cebidae, and from 1.3 to 12 kg in Atelidae. Curiously, the
species with the extreme body weights in either group belong to genera that are
deeply nested in the phylogeny: there has been a certain tendency towards reduction
in body size in Atelidae, and towards enlargement in body size in Cebidae.

Across primates generally and in New World monkeys in particular, the reliance
on animal prey (or other food items of high energy content) decreases with increas-
ing body size (see Ford and Davis 1992). However, within smaller groups the pattern
is not always so clear. Within callitrichins, for example, there is no direct relationship
between body size and degree of insectivory or exudativory (Garber 1992). The rela-
tionship between body weight and diet has traditionally been explained in terms of
metabolic rates. Smaller species have higher metabolic rates than larger ones, and
therefore the expectation is that they need to consume a higher proportion of energy-
rich resources to support their higher needs (Kleiber 1947, 1961; Clutton-Brock and
Harvey 1983; Eisenberg 1981, 1990; Martin 1990; Schmidt-Nielsen 1984; Kay 1984;
Ford and Davis 1992).

In spite of the apparent absence of key morphological innovations for the Atel-
idae and Cebidae, subclades of these broad groups seem to have evolved traits that
enable them to exploit resources that may not be accessible to other groups, based on
the nature of those resources or their arboreal location. This functional radiation may
have increased the number of species that can coexist locally, and is discussed below.

Atelinae

ATELINES ~ the howler, spider, woolly, and woolly spider monkeys — possess an
apparent key innovation, a prehensile tail, that opens the possibility of exploiting a
range of resources inaccessible to other quadrupeds. Tail prehensility has evolved
independently in six orders of mammals with very different ecological roles (e.g., fru-
givory, folivory, and omnivory), in such groups as the opossums, kinkajous, porcu-
pines, and primates. All use their prehensile tails both for support while feeding on
branch-tips or locations of difficult access and as an aid in locomotion, especially on
unstable supports or while descending (Grand 1978; Charles-Dominique et al. 1981;
Emmons and Gentry 1983). Emmons and Gentry (1983) noted that prehensile-tailed
animals occur with a higher frequency in neotropical forests than in Africa or Asia-
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\{oreover, use of the prehensile tail to move through the canopy seems mostly
-regtricted to the Neotropics (Emmons and Gentry 1983). Tropical forests are thought
to be structurally similar across continents (Richards 1952; Leigh 1975), based mostly
on measures of biomass and productivity, leaf size and shape, canopy height and
degree of stratification, and tree density (Dawkins 1959; Leigh 1975). However,
Emmons and Gentry (1983) reasoned that there might be some differences that make
the possession of a prehensile tail advantageous in the Neotropics a.n.d not the Pale-
otropics. With the purpose of investigating this question, they quant1f1§d sevszral fac-
tors, and found two interesting differences: (1) liana density is higher in Africa than
in the Neotropics and Borneo; and (2) there are more palm trees in South American
forests than on the other continents.

Lianas have two important functions for monkeys, providing food and travel cor-
lidors. Prehensile tails are probably not of much use when traveling on lianas (Emmons
and Gentry, 1983). But they may be particularly useful in coping with the downward
bending of branch tips under the weight of suspended animals. When lianas are pre-
sent, animals tend to use them to pass from one tree to another, which allows them to
bvpass droop-prone terminal branches. Therefore, it seems that the extensive presence
of lianas in Africa may have reduced the usefulness of prehensile tails.

The second variable considered by Emmons and Gentry (1983) is the frequency
of palms, which is far greater in neotropical forests. Palms are rarely invaded by lianas
(Putz 1980) and are often surrounded by gaps in the vegetation. Arboreal animals fre-
quently use palms as a pathway through the forest, and some eat palm fruits. Those
animals who have prehensile tails use them to gain access to the palm trees. Emmons
and Gentry (1983) postulated that frequent climbing on palm trees may have con-
tributed to the selective advantage of prehensile tails in the Neotropics.

Atelines use suspensory feeding postures with the aid of their tail, spreading their
weight over several widely dispersed supports, hanging by their long limbs and tail.
This allows them access to resources on branches that would be too thin to support
their large body weight if they were to stand on them. Spider monkeys (and proba-
bly woolly and woolly spider monkeys) travel along smaller supports than one
would expect based on body size alone (Fleagle and Mittermeier 1980), by using
bimanual locomotion and with the aid of their tails. In contrast, howlers (which travel
mostly quadrupedally and are roughly of the same size as spider monkeys) use one
large support at a time (Fleagle and Mittermeier 1980). Brachiation and climbing are
likely to allow spider monkeys to shorten pathways between or within feeding
patches, and suspension would enhance their maneuverability on thin supports. A
quadruped would have to follow branches that zig and zag (Grand 1984).

It is likely that the ancestor of atelines was quadrupedal and the ancestor of
atelins a brachiator (Figure 6.4). We base this conclusion on the fact that howlers and
ateline sister-groups are quadrupedal, and that all atelins are brachiators (see Rosen-
berger and Strier 1989 for a similar conclusion).

There is a general tendency for larger-bodied mammals to be more folivorous
than smaller ones (see above). The atelines are the largest New World monkeys and
some of them are the most folivorous. Larger monkeys have absolutely greater nutri-
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tional requirements and therefore need to feed on highly abundant resources, such
as leaves. On the other hand, leaves are low-quality foods that require longer diges-
tion than other kinds of food. Gaulin (1979) suggested that the lower basal metabolic
rates of larger animals permit low rates of digestion. Within atelines, however, the
pattern is not so simple. For example, the woolly spider monkey and the mantled
howler (Alouatta palliata) eat comparable amounts of fruit in two different geograph-
ical locations, but the woolly spider monkey is twice as frugivorous as the sympatric
brown howler (Alouatta fusca) studied during the same period (Strier 1992).

In any habitat where they co-occur, howlers are always more folivorous than
atelins. Howlers occur in sympatry with other atelines over most of their range, but
even where they occur alone (e.g., northern Argentina), howlers are the most folivo-
rous of all Atelinae, which suggests that their diet became established in evolution-
ary time, and is not a mere recent ecological condition.

The geographical distributions of spider and woolly spider monkeys are, for the
most part, mutually exclusive (Herndndez-Camacho and Cooper 1976). Terborgh (1983)
noted that they both are present in some regions of Peru, but that they never occur in
the exactly the same places; they are always at least a few kilometers apart. This was
considered as a good example of competitive exclusion by Waser (1987). But spider and
woolly spider monkeys are sympatric in some places in Colombia (Izawa 1975; Steven-
son et al. 1991, 1994) and Peru (Herrera, unpubl. data, cited in Peres 1994).

Woolly monkeys (L. lagothricha lugens) and long-haired spider monkeys (Ateles
belzebuth) occur in sympatry at La Macarena, Colombia (Stevenson et al. 1991). Few
differences were found in the way these species exploited resources. However, spi-
der monkeys fed heavily on fruits of Jessenia while this item was absent from the diet
of woolly spider monkeys. In addition, woolly spider monkeys fed heavily on insects,
while spider monkeys rarely consumed them; this is the only reported case of heavy
insect consumption by Lagothrix. These two divergences could be interpreted as a
mechanism by which woolly spider monkeys can survive in sympatry with spider
monkeys, given that both otherwise have very similar diets and modes of exploiting
resources. [t remains to be seen whether this characteristic of L. lagothricha lugens is
an opportunistic strategy to overcome a presumed shortage of fruits, or is a fixed fea-
ture of this subspecies that occurs regardless of the availability of its preferred food.

Chapman (1987, 1988) studied the black-handed spider monkey, the mantled
howler, and the white-throated capuchin (Ateles geoffroyi, Alouatta palliata, and Cebus
capucinus respectively) in sympatry in Costa Rica over two years. Their diets showed
high variability and overlap, leading him to conclude that it was unlikely that these
species’ diets could be influenced by interspecific competition (Chapman 1987).
Tomblin and Cranford (1994) studied the white-throated capuchin (Cebus capucinus)
and the mantled howler (A. palliata) elsewhere in Costa Rica, and reported that the
two species used the same macrohabitats. However, based on a detailed study of
branch use, feeding mode, positional behavior, and diet, they found significant dif-
ferences between the species, at least during the rainy season. Even when both mon-
keys used exactly the same tree species at different times, they did not use them in
the same way. The relative diameter of the branches used differed significantly, as did
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the distance from the trunk at which they foraged. Mantled howlers were concen-
trated on the periphery of the crowns, where they could reach the lea\_fes, wbereas
Capuchins showed a greater variability of branch use, spending par.t of tbe time on
the periphery and also near the trunk. Capuchins ate a greater variety of food; the
major components were fruit (44%) and invertebrates (37%), whereas the howlers
were never observed eating fruit but instead ate leaves (94%) and buds (5.8%). Only
howlers used their prehensile tail while feeding to suspend themselves near the tips
of the branches.

In summary, atelines seem to have acquired key innovations in a stepwise fash-
ion: all of them share a prehensile tail and suspensory positional behavior. A nested
subset of atelines — the spider, woolly, and woolly spider monkeys — have developed
the ability to travel bimanually. Field observations suggest that tail prehensility opens
access to many resources that would be otherwise inaccessible.

Pithecinae

Pithecins possess unique dental characteristics that allow exploitation of
resources that other species do not exploit. They have sharp canines which they use
to open hard-husked, immature fruits. Bearded sakis possess the most remarkable
canines with which they can open the hardest fruits (Kinzey and Norconk 1993). Liv-
ing pithecins have very procumbent upper incisors (an unknown character in Cebup-
ithecia), which they use to open some kinds of fruits (van Roosmalen et al. 1988).

In addition to sharp canines and procumbent incisors, living pithecins share a
thin crenulated molar enamel and reduction in molar relief. Pithecins break the
husk of some fruits and masticate the seeds inside. These seeds are usually softer
than seeds of fruits that do not possess a hard husk and are usually swallowed and
dispersed undigested. Low occlusal relief may resist wear well (Rosenberger and
Kinzey 1976). The absence of a thick enamel could be correlated with the consis-
tency of seeds: they may be hard to masticate, but they are not brittle (Kinzey 1992).
The fossil pithecin Cebupithecia sarmientoi seems to be the sister-group to recent
pithecins. It displays long sharp canines, similar in shape to those of living
pithecins, but the molars have a higher relief and the enamel is not crenulated. This
suggests a two-stage evolution of sclerocarpic foraging in pithecins: the characters
that enabled them to open fruits arose first, and then molar modifications evolved
which were (presumably) advantageous for seed processing; the latter modifica-
tions are seen in recent forms only (Setoguchi et al. 1988; Kinzey 1992). As in the
atelines, key characters in the pithecines appear to have evolved in steps, not as an
integrated complex.

Uakaris and bearded sakis seem unlikely to be sympatric because both are fru-
givores specialized in seed consumption (Ayres 1989). Sakis and bearded sakis also
have similar diets, yet they co-occur throughout most of their geographical range
(Kinzey and Norconk 1993). Some differences have been noticed in behavior that
might partly explain their capacity to share the same habitats. Guianan sakis tend to
forage in lower levels of the canopy (van Roosmalen et al. 1988; Mittermeier and van
Roosmalen 1981) and eat softer pericarps (Kinzey and Norconk 1993) than sympatric
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bearded sakis. Sakis also eat more flowers during the dry season, when fruit avail-
ability is depressed, while bearded sakis continue to specialize on fruits (Kinzey and
Norconk 1993).

The geographic distribution of spider monkeys also overlaps extensively with
those of sakis and bearded sakis. Like bearded sakis, spider monkeys are upper-
canopy frugivores (Norconk and Kinzey 1994). Sakis that feed in the understory and
lower canopy use different plant species (van Roosmalen et al. 1988). Fruits represent
over 90% of the diet of both the black spider monkey (Ateles paniscus) and the black
bearded saki (Chiropotes satanas) and their diets overlap in a number of species. The
bearded saki exploits many fruits at an earlier stage than the spider monkey, when
they are still unripe and much harder to open. The bearded saki opens fruits signifi-
cantly harder than those the spider monkey does, whereas the average hardness of
the fruits sakis open is intermediate and not significantly different from the other two
taxa (Kinzey and Norconk 1990; 1993). Species of sakis and bearded sakis that do not
overlap in distribution have more similar ecological characteristics (Peres 1993).
Given all factors described above, there is no strong evidence of an evolutionary
divergence in the ecology of sakis and bearded sakis, at least at a broad generic level.

In Venezuela, the diets of the black bearded saki (Chiropotes satanas), black spider
monkey (Ateles paniscus), and long-haired spider monkey (A. belzebuth) have been
studied in sympatry (Kinzey and Norconk 1990; Norconk and Kinzey 1994) and
allopatry (Kinzey and Norconk 1993). Although the data available are limited, they
give no indication of competitive release (Norconk and Kinzey 1994). This suggests
that while sakis and spider monkeys overlap in food sources, they may not compete
with each other intensively.

At least one species of titi monkey (Callicebus brunneus) has been reported to
include immature fruits in its diet, as do pithecins (Wright 1989). The yellow-handed
titi monkey (C. torquatus) opens most hard fruits with its canines (as do pithecins) or
premolars (Kinzey 1977a), in contrast with capuchins that open hard fruits with pre-
molars or molars (Janson and Boinski 1992). This habit of titi monkeys of using their
canines to open fruits could be the beginning of a tendency in the clade, despite the
fact that titi monkeys have the relatively smallest canines among living platyrrhines.
They also share lower molars (especially the second) that show a subequal height of
trigonid and talonid with the other pithecines. This character could have some rela-
tion with reduction of occlusal relief and mastication of seed and as pointed out for
pithecins (Rosenberger and Kinzey 1976) but this is not possible to test at the moment.
There are no reports of seed-predation in titi monkeys.

A few subspecies of titi monkeys overlap in their geographical distributions: C.
torquatus torquatus overlaps with both C. cupreus discolor and C. c. cupreus in Peru and
western Brazil (Soini 1972; Kinzey 1978; nomenclature follows Mittermeier et al.
1988); C. cupreus and C. torquatus also have been reported to overlap in southern
Colombia (Hernandez-Camacho and Cooper 1976; Klein and Klein 1976). But geo-
graphical overlap does not imply spatial co-occurrence: different habitat preferences
were detected, atleast for C. t. torquatus and C. c. discolor (Soini 1972; Moynihan 1976a;
Kinzey 1978, 1981; Kinzey and Gentry 1979). These studies also found interspecific J
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differences in dental morphology, diet, and preferen.ces in canopy levels, aménglotyhtler
factors (Kinzey 1978). These data suggest an adaptive radiation at t.he species level.
To summarize, Pithecinae are characterized by a few morphological chaFactel.rs . (?t
which none can be identified as a key innovation at pres.ent. In contrast, P1thgc;m lcsi
supported by a suite of dental characters (e.g., sharp canines) th:.at can be corl151. ere f
key innovations. In addition, living pithecins show low cusp relief. The e'VO ugon 0
these characters in two steps suggests that ability to open‘hallrd-husked fruits an fmés-
ricate the enclosed seeds evolved in separate phases..Thxs is angther exargple o ex:}cs—
lution in steps through key innovations. Within living pithecins, uakaris show the

most remarkable divergence in that they specialize in living in flooded forests.

Cebidae . ' .
Aotus — Owl monkeys bear several traits that may represent key innovations for

a nocturnal habit. They have the lowest metabolic rate among the few kr\(?wn to.r
platyrrhines (Le Maho et al. 1981). All nocturnal primates have low metabolic rsti%,,
although this is not true for all nocturnal mammals- (McNab 1983). Low metabo IC.
rates presumably allow nocturnal animals to live with much lower levels of energy
consumption (Crompton et al. 1978). . ‘

Owl monkeys have relatively larger eyes than other plaFyrrhmes, which enhance
vision at low light levels. Its lens is more spherical than in du,llr-na'l forms, a shape that
refracts more light onto the retina (Wright 1989, 1994). The iris is located mc?re pos-
teriorly, toward the center of the eye, allowing the pupil to reach a lar.ger diameter
and more light to reach the retina (Noback 1975). In addition, ac;ordmg to Ogdeq
(1975), the rod density throughout the retina is several times h1g1jer tk}an th-at of
humans. The size of the olfactory lobes of the brain relative to the size of the visual
cortex suggests that olfaction is more important in owl monkeys than in other
platyrrhines (Wright 1989). . '

Samiri AND CEBus — Differences in behavior seem to be the key to differential
resource exploitation in capuchins (Cebus) and squirrel monkeys (Sainziri? (Janson apd
Boinski 1992). Certain behaviors are shared by these genera; an example is the manip-
ulative foraging through foliage and small twigs when searching for insects. But this
behavior is also displayed by callitrichins, their sister-group, and so appears to be a
primitive condition for Cebus-Saimiri. . .

Body size and biting force may permit capuchins to forage in hidden, mechani-
cally tough substrates, such as palm frond bases, cane, bamboo, dead branches, and
termite nests (Janson and Boinski 1992); the most robust species (Cebus apella) spend.s
up to 44.3% of its time associated with such substrates (Terborgh 1983). Ey compari-
son, squirrel monkeys spend only 0.7% of their time searching in such difficult sub-
strates. Capuchins (especially C. apella) also possess very thick dental enarpel, rela-

tively more substantial than that in any other living primate (Kay 1981). This may be
related to the fact that they feed on very hard plant tissues, such as palm nuts (Izawa
and Mizano 1977). .

As mentioned earlier, capuchins provide one of the few cases of congeneric sym-
patry in New World monkeys. This raises the question of whether differences in the
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way the sympatric capuchins exploit the environment suggest an adaptive radiation
within the genus. The tufted capuchin (C. apella) and white-fronted capuchin (C. alb-
ifrons) have been studied in sympatry in Mant National Park in Peru (Terborgh 1983;
Janson 1985; Janson and Boinski 1992). These species showed some differences in their
dietary preferences: the tufted capuchin was seen more frequently foraging on figs;
the white-fronted capuchin, on palm trees. The tufted capuchin showed an ability to
break palm nuts not seen in the white-fronted capuchin; the latter always took much
longer to break such nuts. The tufted capuchin forages heavily on palm nuts in other
parts of its geographical distribution where it is not sympatric with the white-fronted
capuchin, such as northeastern Argentina (I. Horovitz, pers. obs.); therefore, this
dietary trait does not seem to be a localized specialization of the Manti population,
but more likely is a characteristic of the species.

There are also some morphological differences between these two capuchin
species. The tufted capuchin has a larger body weight and is therefore stronger; it also
has a deeper and more buttressed mandible, larger zygomatic arches, and some indi-
viduals possess a sagittal crest, all suggesting a larger biting force. These characters
are consistent with the tufted capuchin’s frequent habit of breaking dead branches in
search of insects and the use of palm nuts as a common food source (Terborgh 1983;
Janson 1985; Janson and Boinski 1992).

All capuchin species have an ability to exploit a wide range of food items. This
may be derived from their ability to manipulate substrates and employ tools, abilities
not possessed by other New World primates (Costello and Fragaszy 1988; Chevalier-
Skolnikoff 1989a; Fragaszy et al. 1990; Visalberghi 1990). An animal uses a tool when
it employs an unattached environmental object as a functional extension of its own
body in attaining an immediate goal (van Lawick-Goodall 1970). Sensorimotor abil-
ity, tool use, and omnivorous extractive foraging have a morphological correlate: brain
size (Gibson 1986; Janson and Boinski 1992). When seasonal sources are scarce in the
low season, capuchins can extract embedded food which is available year-round and
has high concentrations of energy and protein (Parker and Gibson 1977). This might
be the reason why capuchins can inhabit areas not inhabited by other monkeys that
do not have the ability to engage in extractive tasks involving complex, cortically
mediated, sensorimotor coordinations for tapping, probing, looking, and listening to
locate and recognize bark-embedded insects, ripe palm nuts, frogs, and grasshoppers
hidden within tree cavities (Izawa and Mizano 1977; Izawa 1978, 1979a; Terborgh 1983;
Gibson 1986). Most studies on tool-use in capuchins have been conducted with cap-
tive individuals. In the wild, capuchins have been observed to use sticks as probes and
clubs (Boinski 1988; Chevalier-Skolnikoff 1989b), and to employ oyster shells as ham-
mers (Fernandes 1991) although these events are quite rare. They frequently open nuts
and other hard fruits by pounding them against tree trunks or by hitting them together
(Izawa and Mizano 1977). Tool-use is typical of animals who lack specialized anatom-
ical characteristics and need to extract embedded food (Alcock 1972; Gibson 1986).
Extraction per se is not correlated with brain size. Extractors who possess a rather spe-
cialized anatomy to concentrate on one extractive food (such as the marmosets), tend
to have small brain sizes relative to body size (Gibson 1986).
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CatutricHINI — Claws in this group serve a vital function, allowing individuals to
cling to trunks and other vertical supports while exploiting plant exudates and insects,
and/or to leap from trunk to trunk as a traveling behavior (Cartmill 1974; Garber 1980,
1992; Rylands and de Faria 1993). Such supports are too large for small primates to
span with tiny hands and feet; therefore, the possession of claws seems a character
required for clinging onto trunks. Two hypotheses have been suggested for the origi-
nal function of claws in the Callitrichini, involving either feeding on tree exudates
(Sussman and Kinzey 1984) or traveling on large supports (Ford (1986a). Two hypothe-
ses have been suggested for the original function of claws in the Callitrichini, involv-
ing either feeding on tree exudates (Sussman and Kinzey 1984) or traveling on large
supports (Ford 1986a). To test these two hypotheses we need to assume that feeding
and traveling behaviors shown by each species are genetically fixed.

All callitrichins studied in the wild feed on exudates, with the apparent excep-
tion of Goeldi’s monkey (Sussman and Kinzey 1984; Garber 1992). Ford (1986a) based
the second hypothesis on the observation that Goeldi’s monkey (which she consid-
ered basal to callitrichins) uses its claws to travel by vertical clinging and leaping.
Other species that can be characterized as using a clinging-and-leaping mode of pro-
gression are Saguinus fuscicollis, and Cebuella pygmaea (Kinzey et al. 1975; Moynihan
1976b; Castro and Soini 1977; Sussman and Kinzey 1984). Even so, Saguinus and
Cebuella use their claws primarily for clinging to vertical supports while feeding on
exudates rather than for locomotor activities (Kinzey et al. 1975; Sussman and Kinzey
1984). Some species rarely cling onto trunks to forage for insects (Saguinus mystax and
S. geoffroyi [Garber 1992]). The answer to whether Goeldi’s monkey lost the habit of
feeding on exudates, or most other species virtually abandoned the habit of clinging
and leaping and hence the use of their claws while traveling, would be not much
more than a guess at this point. If Goeldi’s monkey were sister to the marmosets (Cal-
lithrix-Cebuella), then the travel hypothesis for origin of claws would be even less
likely. On this basis, we infer that Goeldi’s monkey lost its habit of feeding on exu-
dates secondarily.

Callitrichins share an ability to search for hidden insects with capuchins and
squirrel monkeys; therefore, it seems likely that this ability evolved in their common
ancestor. All species of lion tamarins (Leontopithecus) also have the ability to search
for embedded insects.

The variety of environments and resources callitrichins exploit are not restricted
to individual clades. Species belonging to different genera have converged in their
ecological characteristics. There is only one strong tendency that marmosets exhibit
which is not found in other groups: the most specialized form of exudativory, evi-
denced by their habits and morphology.

The geographic distributions of congeneric callitrichine species and subspecies
are generally non-overlapping. Where sympatry does occur, there is a relatively sharp
differentiation in the way the different types exploit the environment (Ferrari 1993).
The saddle-back tamarin (Saguinus fuscicollis) is sympatric over part of its distribu-
tion with marmosets and some of its congeners. It appears to capture larger prey than
its sympatric congeners by foraging in specific sites such as holes and fissures in bark
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and leaf litter accumulations (Yoneda 1981, 1984; Terborgh 1983), in contrast with the
less manipulative techniques of “scan-and-pounce” or leaf-gleaning used by other
species. Another important difference is that saddle-back tamarins typically forage
at lower levels in the forest than its congeners; this difference persists even in the
absence of other callitrichins (Pook and Pook 1981; Terborgh 1983; Yoneda 1984; Soini
1987; Buchanan-Smith 1990; Fang 1990; Heymann 1990; Ferrari 1993). The two small-
est tamarin species — the saddle-back tamarin (S, fuscicollis) and the black-and-red
tamarins (S. nigricollis) — forage in the lowest forest strata (< 11 m height), while the
larger species occupy mostly the middle strata and lower parts of the main canopy
(> 10 m height) (see Soini 1987). We regard this as a genetically fixed preference; it is
possible that it facilitates the coexistence of S. fuscicollis and other callitrichins.

Possession of claws and a small body enable callitrichins to feed and travel in the
lower forest, on substrates that may be inaccessible to other monkeys. Claws seem to
have been a key innovation that paved the way for further specializations in the mar-
mosets, including modified canines and incisors. This seems to be a case of progres-
sive specialization for a new niche: exploitation of plant exudates. Goeldi’s monkey,
the putative sister-group of the marmosets, has lost the habit of exudate-feeding and
many of the morphological characteristics inferred to occur in their common ancestor.

All cebids are strongly insectivorous, but their searching strategies vary. Owl
monkeys look only for insects exposed on the surface of the branches or in the air. In
contrast, capuchins, squirrel monkeys, and callitrichins have evolved manipulative
abilities and search for insects hidden under leaves, or (in Cebus and Leontopithecuis)
for insects under bark. Did such manipulative abilities evolve more than once in the
New World monkeys? According to the currently most parsimonious scenario — in
which capuchins, squirrel monkeys, and callithrichins form a monophyletic group
(Figures 6.3 and 6.4) — manipulative abilities appear to have evolved only once. How-
ever, given that the monophyly of this group is weakly supported, this conclusion
should be considered provisional.

Conclusions

We conducted a “total evidence” analysis for New World monkeys at the generic
level, combining nuclear and mitochondrial DNA sequences and morphological char-
acters. The tree obtained is congruent with that derived excluding morphology. The
New World monkeys appear to have undergone a basal split into two clades: Atel-
idae = (Atelinae, [Callicebus, Pithecini]) and Cebidae = (Aotus, [{Cebus, Saimiri}, Cal-
litrichini]). Neither of these clades seems to display marked morphological “key inno-
vations” — that is, synapomorphies that allow them to exploit resources in a special-
ized fashion. However, both show an evident difference in ecology: Atelidae are
mainly herbivorous, whereas Cebidae have a heavy component of insectivory. The
only clades unsupported by morphological characters are (Brachyteles, Lagothrix) and
the two most basal nodes of (Saguinus, [Callimico, {Callithrix, Cebuella}]).

Owl monkeys (Aotus) appear to be sister to the remaining cebids, all of which
have a strong component of insectivory. While owl monkeys only search for insects
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exposed on the surface of the branches or in the air, their sister taxon has evolved
manipulative abilities and search for hidden insects and, in some cases, embedded
ones. This basal position of Aotus is, however, only two steps more parsimonious than
alternative topologies (see above), so we consider the conclusions based on this
apparent position to be tentative. .

Atelines display a prehensile tail and suspensory positional behavior, and the
atelin subclade has developed the ability to travel bimanually. These seem to be key
innovations for access to and exploitation of certain food resources, particularly fruits
and leaves near branch tips. Pithecins possess sharp canines; a nested subset‘of this
group shows low cusp relief, which may be important in the exploitation of hard-
husked fruits and mastication of seeds. Possession of claws and small body size may
enable callitrichins to feed and travel in the lower strata of rain forests. Claws may
also have been a prerequisite for dental adaptations for exploiting plant exudates in
marmosets.

In each of the three clades just mentioned, batteries of morphological characters
appear to perform specific functions in an integrated fashion. Our ph‘vlogenet‘m
analysis shows these batteries appear to have evolved in a stepwise fashion ~ that is,
earl}} diverging taxa possess only one or some of these derived characters, while more
derived groups show more of these characters. It appears that these characters often
serve the same functions in both basal and derived groups, although in some cases
additional functions are observed in the latter. Major morphological characters seem
important in several nodes, because they appear associated with the exploitation of
new resources. Most ecological studies of New World primates focus on differences
between co-occurring species in their use of resources. Given that, at least in somg
cases, such differences persist in allopatry as well and are somewhat characteristic ot
the species involved, it appears that most of the ecological variations in this group
do in fact represent evolutionary trends. Differentiation in behavior also seems to be
important at or below the generic level, and does not always have obvious morpho-
logical correlates; inclusion of such behavioral differences promises to be an impor-
tant new direction for research on the adaptive radiation of the New World monkeys.
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