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Cytochrome b sequence variation and a
molecular phylogeny of the live-bearing
fish genus Gambusia (Cyprinodontiformes:
Poeciliidae)

Charles Lydeard, Michael C. Wooten, and Axel Meyer

Introduction

Abstract: Nucleotide sequences for a 402-base segment of the mitochondrial cytochrome & gene were
determined from 25 species of live-bearing fishes. A total of 34 sequences representing 24 species of
the genus Gambusia and 1 species of Belonesox were generated via the polymerase chain reaction. The
levels of overall variation were consistent with those from other genera of fishes. In total, 137 of 402
(34.1%) nucleotides exhibited variation within or among the species. Observed differences at 24 (17.9%)
of the 134 cytochrome b codons would result in amino acid replacements. Phylogenetic analyses
employing various weighting schemes resulted in several clades representing traditionally recognized
taxonomic groups. However, precise relationships among species-groups remained uncertain.
Randomization tests indicated that these topologies contained significant nonrandom phylogenetic
information. As with other fishes, the overall rate of divergence appeared to be slower than that of
other vertebrates and the overall replacement/substitution pattern was suggestive of nonrandom
evolutionary input.

Résumé : Les séquences de nucléotides d'un segment de 402 bases du géne du cytochrome &
mitochondrial ont été déterminées chez 25 especes de poissons vivipares. Au total, 34 séquences
représentant 24 espéces du genre Gambusia et 1 espece de Belonesox ont été produites par
I’amplification en chaine par polymérase. De facon générale, I'importance de la variation était semblable
a celle qui prévaut chez d’autres genres de poissons. Des variations ont été enregistrées dans 137 des
402 (34,1%) nucléotides, aussi bien au sein d’une seule espéce que d’une espéce a l'autre. Les
différences observées dans 24 (17,9%) des 134 codons du cytochrome & sont susceptibles d’entrainer le
remplacement des acides amings. Des analyses phylogénétiques basées sur des stratégies variées de
pondération ont généré plusieurs clades représentant les groupes taxonomiques ordinairement reconnus.
Cependant, les relations précises entre les groupes d’especes restent obscures. Des tests de
randomisation ont indiqué que ces topologies contiennent une quantité sigificative d’information
phylogénétique non aléatoire. Comme chez les autres poissons, la vitesse de la divergence semble avoir
été plus lente que celle qui a prévalu chez les autres vertébrés et le pattern de remplacement/substitution
parait indiquer 1’existence d’un apport évolutif non aléatoire.

[Traduit par la Rédaction]

genome have proved to be particularly useful for these types
of analyses, sequences from numerous taxa now having been

Increased use of nucleotide sequences for testing systematics
and biogeographically based hypotheses has made available
large data bases that are well suited for comparative studies
of DNA sequence evolution. Segments of the mitochondrial
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reported (e.g., Brown et al. 1982; Moritz et al. 1987; Smith
and Patton 1991; Meyer et al. 1990; Sturmbauer and Meyer
1992). Because of the availability of ‘*universal’’ amplifica-
tion primer sequences (Kocher et al. 1989), the ease of align-
ment, and its well-documented biochemistry (Howell 1989),
the mitochondrial cytochrome & gene has been one of the
most frequently utilized of these mitochondrial regions (Irwin
et al. 1991; Meyer 1993, 1994). In the present study, we
generated nucleotide sequence data from this region in order
to evaluate patterns of genetic variation within and among
species of live-bearing fishes of the genus Gambusia.
Gambusia spp. are small, surface-dwelling live-bearers
that are ubiquitous members of aquatic ecosystems through-
out the southern United States, Mexico, Central America,
and many Caribbean islands (Rosen and Bailey 1963). The
genus Gambusia (Cyprinodontiformes: Poeciliidae) is com-
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Table 1. The 24 species of Gambusia included
in this study, classified after Rauchenberger
(1989) as the initial taxonomic hypothesis.

Subgenus Heterophallina
vintata
panuco species-group
marshi
panuco
rachowi species-group
rachowi
Subgenus Arthrophallus
affinis species-group
affinis
holbrooki
nobilis species-group
heterochir
sexradiata
eurystoma
senilis species-group
hurtadoi
geiseri
Subgenus Gambusia
nicaraguensis species-group
nicaraguensis
wrayi
melapleura
puncticulata species-group
yucatana
hispaniolae
hubbsi
manni
puncticulata
oligosticra
caymanensis
punciata species-group
luma
punciata
rhizophorae

posed of approximately 45 species presently assigned to
three subgenera and eight species groups based on Rauchen-
berger’s (1989) recently proposed classification. Species of
this genus have demonstrated remarkable flexibility under a
variety of environmental conditions (Stearns 1983; Zimmer-
man et al. 1988) and have therefore been recognized as use-
ful models for investigating evolutionary and population
level processes (e.g., McClenaghan et al. 1985; Smith et al.
1989).

Nearly all systematic studies of poeciliids, including most
major taxonomic treatments of Gambusia, have relied on
morphological characters that are almost exclusively from a
single morphological character complex, the gonopodium
(intromittent organ of males) and its associated support struc-
tures. These characters, while taxonomically informative,
may lack developmental independence and may be function-
ally linked, making it difficult to determine whether shared
traits are due to a shared common ancestry or convergence
or parallelism (e.g., Constantz 1989).

To overcome these potential limitations, we examined an
alternative data set based on nucleotide level characters that
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do not appear to have a recognizable morphological effect.
Mitochondrial DNA sequences are powerful data for exam-
ining both intraspecific and interspecific relationships and
biogeographic patterns (reviewed by Wilson et al. 1985;
Avise 1986; Avise et al. 1987; Moritz et al. 1987). Further-
more, the availability of protocols for the application of the
polymerase chain reaction (PCR) in molecular systematic
work (Kocher et al. 1989; Meyer et al. 1990) permits the
rapid acquisition of DNA sequences necessary for these
types of studies. Actual mtDNA sequences permit examina-
tion of more distantly related taxa than was previously possi-
ble with restriction enzyme data (Kocher et al. 1989; Meyer
and Wilson 1990; Irwin et al. 1991).

As argued by Tamura (1992), a true understanding of the
causal influences of observed patterns of nucleotide evolu-
tion can only be realized once data from both divergent and
closely related taxa are accumulated. The purpose of the
present study was to generate such an analysis for closely
related taxa of Gambusia and to use this information to gain
insight into the process of mitochondrial DNA evolution and
systematics of the genus.

Materials and methods

Biological material

A total of 34 specimens representing 24 species of Gambusia
(Table 1) plus 1 specimen of Belonesox belizanus were col-
lected from the wild or obtained from aquarium stocks. The
localities and (or) source of specimens examined in this study
were as follows: G. affinis: affinis 1, Village Creek, Hardin
County, Texas; affinis 2, Cow Creek, Travis County, Texas;
affinis 3, Big Bend, Brewster County, Texas (provided by
C. Hubbs); G. caymanensis: Palmetto Point, Grand Cayman
Island; G. eurystoma: Arroyo del Azufre at Banos de
Azufre, 10 km west of Teapa, Tabasco, Mexico; G. geiseri:
San Marcos, Hays County, Texas (aquarium stock provided
by C. Hubbs); G. heterochir: Clear Creek, Menard County,
Texas (aquarium stock provided by C. Hubbs); G. hispani-
olae: Dominican Republic (provided by C. Rodriguez);
G. holbrooki: holbrooki 1, Highway AlA, Key West,
Florida; holbrooki 2, Orlando, Florida (provided by EF
Snelson, Jr.); G. hubbsi: Adelaid Beach, New Providence,
Bahamas; G. hurtadoi: Chihuahua, Mexico (aquarium stock
provided by C. Hubbs); G. luma: Guanacaste Park, 3 km
north of Belmopan, Belize; G. manni: Lake Cunningham,
New Providence, Bahamas; G. marshi: 1.5 km south of
Hermanas, Highway 57, Coahuila, Mexico; G. melapleura:
Bluefields River at Old Rest House, Jamaica; G. nicaraguen-
sis: Rio Perezosa, near Cahuita, Costa Rica; G. oligosticra:
Port Royal Causeway, 5.5 km west of Kingston airport,
Jamaica; G. panuco: Rio Panuco, 6 km south of Cuidad
Valles, San Luis Potosi, Mexico: G. punctata: Cuba (pro-
vided by B. McKeand); G. puncticulata: Cuba (provided by
B. McKeand); G. rachowi: Rio Jactepec, Rio Coatzacoalcos
near Jesus Carranza, Veracruz, Mexico; G. rhizophorae:
rhizophorae 1, Key West, Highway A1AS, Florida; rhizo-
phorae 2, La Ceiba, east of Havana, Cuba; rhizophorae 3,
Bacuranao Canal, east of Havana, Cuba; G. sexradiata: Rio
Papaloapan, Highway 175 near Tuxtepec, Oaxaca, Mexico;
G. vintata: Rio Tamesi at bridge 25 km from Highway 80,
Tamaulipas, Mexico; G. wrayi: Black River near Middle
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Quarters, Route 1-2, Jamaica; G. vucatana — yucatana 1,
Rio Coatzacoalcos 4.4 mi northeast of intersection of High-
way 180 and Highway 180 bypass, Veracruz, Mexico;
yucatana 2, Lake Coban, Quintana Roo, Mexico (provided
by B. McKeand); Belonesox belizanus: Florida Everglades
(provided by B. Loftus). Intraspecific variation was assessed
by examining several specimens from a single species. In
particular, G. holbrooki, one of the most widely distributed
species in this group, was sampled from localities from the
extreme points of its range, as was G. rhizophorae. In addi-
tion, three specimens of G. oligosticta from a single locality
and two specimens of G. luma from the location above plus
Dominic Isla were sequenced. Except where identified above
as separate, all duplicated sequences were identical.

DNA extraction, amplification, and sequencing

Whole genomic DNA was extracted from frozen or 75%
ethanol-preserved muscle tissue (<0.2 g) following Kocher
et al. (1989). Symmetric and asymmetric amplifications of
a 425 base pair (bp) segment of the mitochondrial cyto-
chrome b gene were generated via PCR (Saiki et al. 1988)
following the protocol of Kocher et al. (1989). The initial
primers used were H15149 (Kocher et al. 1989) and L14724
(Meyer et al. 1990; Pddbo 1990). Symmetric amplifications
were performed in 25 pL of Tris (67 mM, pH 8.8) containing
2 mM MgCl,, 1 mM of each dNTP, 1 uM of each primer,
Taq polymerase (1.25 units, Perkin—Elmer—Cetus), and
DNA (50—500 ng). The amplification regime consisted of
30 cycles of denaturation at 92°C for 40 s, annealing at 52°C
for 60 s, and extension at 72°C for 90 s. Single-stranded
DNA was produced for sequencing via asymmetric PCR
(Gyllensten and Erlich 1988) using agarose electrophoresis
purified double-stranded PCR products as templates (Kocher
et al. 1989) and L 14724 as the limited primer. Reaction con-
ditions for asymmetric PCR were as above with the excep-
tions that one primer was held limiting, the final volume of
reaction cocktail was increased to 50 pL, and the total num-
ber of cycles increased to 35. Thermal cycling was performed
in a programmable heating block (Perkin—Elmer—Cetus)
with negative (-DNA) controls included with each reaction set.

Following purification by centrifugal filtration, single-
stranded DNA was sequenced by dideoxy chain termination
using Sequenase Version 2.0 (United States Biochemical)
and instructions supplied by the manufacturer. The limiting
primer in the asymmetric PCR reaction (L14724) and an
internal primer designed from actual sequences of Gambusia
(L14952, 5'-TCYTCYGTYRCCCAYAT-3") were used as
the sequencing primers, with *°S included to permit auto-
radiographic visualization. The dideoxy-terminated chains
were separated by electrophoresis on 6% polyacrylamide
gels using a combination of wedge and normal gels, run from
2 to 6 h. Following electrophoresis, all gels were vacuum-
dried and exposed to X-ray film for 12—48 h.

Interspecies alignments and sequence manipulations uti-
lized the PC-based program ESEE (Cabot and Beckenbach
1989). Nucleotide analyses, amino acid predictions, and
transition/transversion patterns were generated using the pro-
gram MacVector (Version 3.04; International Biotechnolo-
gies). Additional sequence comparisons were performed using
GENBANK (Pearson and Lipman 1988) via electronic mail.
Initial sequence conformation and codon position determina-
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tions were made using alignments to known mammalian
cytochrome b sequences (Bibb et al. 1981; Smith and Patton
1991). Statistical comparisons were made using both para-
metric and nonparametric procedures, the parametric results
being reported when the outcomes were identical. All
sequences generated have been submitted to GENBANK
(Accession Nos. U18107, U18115, U18206—U18228).

Methods of phylogenetic reconstruction

Phylogenetic analyses were performed using the ‘‘phylo-
genetic analysis using parsimony’” (PAUP, 3.1) software
package (Swofford 1993). Given the number of taxa involved,
a heuristic algorithm was employed to search for the most
parsimonious trees, using the following options: keep mini-
mum trees only, collapse zero-length branches, random step-
wise addition of taxa with 10 replications, tree bisection and
reconnection. The monotypic genus Belonesox was used as
an out-group (Rosen and Bailey 1963; Rauchenberger 1989;
A. Meyer, unpublished data). Bootstrap measures of stability
(Felsenstein 1985) were estimated with 200 iterations using
PAUP. We employed several strategies in the parsimony
analyses: all substitutions given equal weight; substitutions
in the first and second codon positions weighted two and four
times, respectively; and transversions weighted four times
transitions. The various weighting schemes were used in an
attempt to minimize potential noise created from character
homoplasy, particularly in the third codon position. The data
set was tested for nonrandom information structure with the
randomization procedure described by Archie (1989a, 1989b),
using the programs Randomiz and SumPAUP (J. Archie,
personal communication). In addition, a skewness test statis-
tic, gI, was calculated on the basis of the distribution of tree
lengths of a random sample of 10000 topologies. Data
matrices with strong phylogenetic signals are predicted to
produce tree-length distributions that are strongly skewed to
the left (Hillis and Huelsenbeck 1992).

Tests for the presence of a molecular clock were gener-
ated using the DNAML and DNAMLK programs from PHYLIP
(Felsenstein 1993). Log-likelihood estimates for pruned
parsimony topologies were produced via the USER TREE
option. Absolute differences (X2) between the log-likelihood
estimates generated for each topology with and without the
assumption of a molecular clock were tested for significance
using the x* distribution (Felsenstein 1993).

Results and discussion

Nucleotide sequence variation
Nucleotide sequences of up to 402 bases were obtained for
the cytochrome & region from 33 specimens representing
24 species of Gambusia plus one specimen of Belonesox
belizanus (Table 1, Fig. 1). Of the 402 sites, 137 (34.1%)
were variable. Of these sites, 23 (16.7%) were in the first
codon position, 7 (5.1%) were in the second, and 107
(78.1%) were in the third. Consistent with reports for other
species and other mitochondrial segments (Brown et al.
1982; Kocher et al. 1989; Thomas and Beckenbach 1989),
the third position of each codon was most variable (79.8%
of all third positions), the first and second positions being
substantially less (17.2 and 5.2%, respectively).

Mean pairwise percent sequence differences (uncorrected
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Fig. 1. Nucleotide sequence for a 402-base segment from the mitochondrial DNA cytochrome b gene of poeciliid fishes.
Twenty-nine sequences are reported from representatives of 24 species of Gambusia and 1 species of Belonesox. The letters above
each triplet are amino acid designations.
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Fig. 1 (continued).
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Fig. 1 (continued).
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Fig. 1 (concluded).
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Table 2. Nucleotide differences for cytochrome b among 25 species of poeciliid fishes.

Species 1 2 3 4 5 6 7 8 9 10 11 12
1 affinis 1 — 26/10 31/11 23/6 2417 32/8 13/2 26/12 34/8 31/19 26/11 29/9
2 caymanensis 2.6 — 23/14 26/8 2517 30/9 29/10 17/7 30/8 27/16 15/6 24/5
3 eurystoma 2.8 i.6 — 31/11 33/12 33/14 32/11 23/18 36/11 30/20 23/17 30/12
4 geiseri 3.8 32 2.8 — 14/5 32/9 29/4 29/9 31/8 38/17 29/8 29/9
5 heterochir 34 3.6 2.8 2.8 — 31/8 29/5 31/8 3217 37712 28/7 28/6
6 hispaniolae 4.0 33 2.4 3.6 3.9 — 31/9 32/8 42/9 35/18 29/7 36/8
7 holbrooki 2 6.5 1.7 2.9 7.3 5.8 34 - 30/11 35/8 32117 30/10 33/9
8 hubbsi 2.2 2.5 1.3 3.2 3.9 4.0 2.7 — 40/11 30/20 4/1 27/10
9 hurtadoi 4.3 4.8 3.3 39 4.6 4.7 4.4 3.6 — 36/19 39/10 36/5
10 iuma 34 1.7 1.6 2.2 3.1 1.9 1.9 1.7 1.9 o 31/19 35/18
11 manni 24 2.5 1.4 3.6 4.0 4.1 3.0 4.0 3.9 1.6 — 28/9
12 marshi 32 4.8 2.5 3.2 4.7 4.5 3.7 2.7 7.2 1.9 3.1 -
13 melapleura 3.4 3.9 2.8 3.7 7.3 4.5 33 5.2 5.1 24 6.4 = 5.2
14 nicaraguensis 3.1 3.0 2.6 5.5 4.4 3.8 4.5 3.4 34 2.1 52 3.8
15 oligosticta 2.7 1.0 1.6 3.5 3.9 3.2 2.8 2.7 4.0 1.6 3.5 52
16 panuco 33 42 34 4.8 8.7 5.0 53 4.3 9.5 2.5 2.7 5.3
17 puncrata 4.1 2.4 2.4 4.6 2.9 5.2 4.7 2.2 4.3 1.7 23 34
18 puncticulata 2.8 4.0 2.3 3.9 4.7 3.2 31 2.4 4.1 1.5 2.3 5.0
19 rachowi 1.9 2.2 1.1 24 2.9 1.8 2.5 2.3 2.2 1.7 1.1 2.4
20 rhizophorae 3.7 2.9 2.5 5.8 5.0 5.7 6.4 3.0 5:3 1.8 3.0 3.4
21 sexradiata 2.4 2.3 1.7 2.6 3.1 31 2.8 1.5 3.2 1.4 1.6 2.8
22 vittata 2.9 4.7 2.4 2.7 6.0 4.1 33 3.8 6.8 1.9 4.1 9.0
23 wrayi 3.0 4.2 2.7 4.1 7.8 3.1 3.6 3.4 5.1 2.7 3.7 5.8
24 yucatana 1 3.1 7.0 1.5 4.0 4.8 36 3.4 2.8 5.0 1.4 2.8 6.8
25 Belonesox 3.1 34 22 3.3 4.1 3.2 2.9 2.6 4.3 2.9 2.8 4.2

Note: The numbers of transitions/transversions are listed above the diagonal with the corresponding ratios below the diagonal.

Fig. 2. Sequence differences among poeciliids at three taxonomic levels: intraspecies,
interspecies, and intergenus.
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Species
13 14 15 16 17 18 19 20 21 22 23 24 25
27/8 31/10 27/10 26/8 29/7 28/10 33/17 26/7 29/12 23/8 27/9 28/9 52/17
2717 18/3 1/0 25/6 22/9 4/0 37/17 26/9 25/11 28/6 25/6 1 47/14
31/11 34/13 24/15 37/11 29/12 35/15 26/24 30/12 5/3 26/11 27/10 21/14 53/16
26/7 33/6 28/8 29/6 3217 31/8 40/17 29/5 31712 22/8 29/7 28/7 56/17
29/4 3177 2717 26/3 32/8 33/7 40/14 30/6 34/11 30/5 31/4 29/6 49/12
2716 34/9 29/9 3517 31/6 29/9 35/20 34/6 34/11 29/7 25/8 29/8 51/16
23/7 36/8 28/10 32/6 33/7 31/10 38/15 32/5 34/12 26/8 2517 31/9 49/17
31/6 24/7 19/7 30/7 26/12 17/7 42/18 30/10 23/15 34/9 27/8 17/6 47/18
36/7 34/10 32/8 28/4 30/7 33/8 41/19 37/7 38/12 27/4 36/7 35/7 55/13
31/13 32/15 28/17 37/15 30/18 25/17 34/20 29/16 27/19 32/17 32/12 26/18 47/16
32/5 31/6 21/6 16/6 21/11 14/6 19/17 27/9 23/14 33/8 26/7 14/5 48/17
31/6 34/9 26/5 16/3 27/8 25/5 39/16 27/8 31/11 27/3 35/6 27/4 51/12
— 31/6 26/7 31/3 24/8 31/7 37/16 32/6 32/8 28/5 12/1 26/6 52/13
5.2 — 19/4 35/6 29/9 18/4 44/17 32/7 36/10 37/8 33/5 19/5 53/15
3.7 4.8 — 27/6 23/9 5/0 38/17 27/9 26/12 29/6 24/7 8/1 46/15
10.3 5.8 4.5 — 31/7 26/6 34/15 33/5 27/10 28/2 32/3 26/5 48/11
3.0 3.2 2.6 4.4 — 24/9 31/20 15/1 30/11 2717 24/8 27/8 53/16
4.4 4.5 5.0 4.3 2.7 — 38/17 32/9 27/12 30/6 2717 8/1 46/15
2.3 2.6 2.2 2.3 1.6 2.2 — 29/18 28/23 32/17 35/16 37/18 48/24
5.3 4.6 3.0 6.6 15.0 3.6 1.6 — 30/11 26/7 28/6 31/8 53/15
4.0 3.6 2.2 2.7 24 2.2 1.2 2.0 — 27/10 28/7 24/11 57/15
5.6 4.6 4.8 4.0 3.9 5.0 1.9 3.7 2.9 — 29/5 32/5 59/9
12.0 6.6 34 10.7 3.0 3.9 2.2 4.7 4.0 5.8 — 24/6 51/12
4.3 3.8 8.0 5.2 34 8.0 2. 3.9 22 6.4 4.0 — 49/14
4.0 3.5 3.1 4.4 33 3.1 2.0 3.5 3.8 6.6 43 35 -

for multiple hits) ranged from 0.0 to 1.0% within a species,
with the highest value observed in the comparison of G. hol-
brooki from Orlando, Florida, with G. holbrooki from Key
West, Florida (Table 2). Interspecies values averaged 9.1%
with a range from 1.0 to 15.2% (Fig. 2). The lowest values
observed were for comparisons between G. oligosticta, G. cay-
manensis, G. puncticulata, and G. yucatana of the puncti-
culata species-group (range 1.0—2.8%), G. hubbsi and
G. manni of the puncticulata species-group (1.2%), and G. sex-
radiata and G. eurysroma (2.0%). The highest average inter-
species differences were found for G. luma and G. rachowi
versus all other species of Gambusia (range 10.6—15.2%).
Intergeneric percent differences between the out-group,
Belonesox, and Gambusia ranged from 14.8 to 18.2%. Over-
all, with the exception of a few extreme values, intraspecies,
interspecies, and intergenus percent sequence differences
clustered into distinct groups that exhibited minor overlap
(Fig. 2).

Base compositional bias

Differences among codon positions were also noted when
base composition and bias were considered (Fig. 3). For
Gambusia, as with other vertebrates (Irwin et al. 1991), the
greatest departure from equal base utilization occurred in the
third position, where G was found very infrequently (average
5.9%), while C was most abundant (average 44.6%). Second-
position nucleotides exhibited a less deviant but similar pat-
tern, G again being the least frequent base (15.7%) but T
now being most frequent (39.7%). Only a slight departure

from equal representation was noted in the first positions,
with all nucleotides averaging within 2% of expected. Esti-
mates of compositional bias (Fig. 3) reflected this pattern,
with averages increasing from near zero for first positions to
0.293 in third positions. Meyer (1993) observed that anti-G
bias is common in fish cytochrome & sequences, especially
in third positions.

Transitions and transversions

The number of transitions and transversions for all pairwise
comparisons are shown in Table 2. The mean number of
transitions among species of Gambusia was 28.5 (range 1—
44) and transversions 9.3 (range 0—24). The mean number
of transitional differences between Belonesox and all species
of Gambusia was 48.8, while transversions averaged 14.5.
The mean transition/transversion ratio for Gambusia was 3.7
(range 1.0—15.0), with a lower value, 3.6 (range 2.0—-6.6),
observed among the Belonesox with Gambusia comparisons
(Table 2).

Several investigators (Cracraft and Helm-Bychowski 1991;
Smith and Patton 1991; Meyer 1993,1994) have noted that
the disparity in substitution rates between third positions and
first/second positions can affect overall measures of sequence
difference. The general prediction from these studies is that,
owing to a greater rate of evolution, third positions will
become saturated at low overall levels of sequence diver-
gence, so they become phylogenetically noninformative. For
our data, percent sequence differences at the third position
were well below the 30—40% range reported among cichlid
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Table 3. Total silent and replacement differences from comparisons between a
nucleotide sequence from Gambusia affinis and each of 27 additional sequences.

Codon position

First Second Third Total®
Transitions
Silent 26 (2.8) 0 632 (67.4) 658 (70.2)
Replacement 39 4.2) 6 (0.6) 0 45 (4.8)
Transversions
Silent 0 0 216 (23.0) 216 (23.0)
Replacement 16 (1.7) 3(0.3) 0 19 (2.0)

NoTEe: Numbers in parentheses are percentages.

“Cell and row total percentages were calculated independently as proportions of the total

count (938) x 100.

Fig. 3. Percent frequencies of the four nucleotides from a
402-base segment of the mitochondrial cytochrome b gene
separated as to their codon positions. Values represent
averages across 28 sequences from Gambusia. Standard
deviations were all less than 3.0%. Base composition bias

was calculated using the formula of Prager and Wilson (1988).
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fishes where saturation was thought to occur (Meyer 1993).
Nonetheless, these results suggest that even when consider-
ing taxa with relatively low levels of sequence divergence,
attention must be given to the dynamics of sequence evolu-
tion prior to attempts at phylogenetic reconstruction.

Amino acid differences
Based on comparisons between the sequence from G. affinis 1
and each of the remaining 27 Gambusia sequences (Fig. 1),

the inferred number of amino acid replacements that occurred
in each codon position along the cytochrome b sequence
were determined. The 402-base fragment was translated into
an amino acid sequence 134 residues in length. Of the
134 residues, 20 were variable (12 phylogenetically infor-
mative) among the taxa. Most changes in first- and all in
second-codon positions are predicted to result in replacement
substitutions, while all changes in the third positions repre-
sent silent substitutions (Table 3). All transversions observed
in both the first and second positions would result in amino
acid replacements. Fourteen of the amino acid replacements
were due to either a transition or a transversion in the first-
codon position. Three replacements were from transitions in
the second-codon position. Three replacements were from a
change in both the first- and second-codon positions. Inter-
estingly, 32% (Table 3) of the total substitutions in the first-
codon position would not result in amino acid changes. These
silent substitutions were leucine/leucine.

Systematics and phylogenetic analyses of Gambusia

The first analytical approach, in which all base substitutions
were weighted equally, produced three equally parsimonious
trees of 426 steps with a consistency index (CI) of 0.45 or
0.40, excluding uninformative characters. A strict consensus
tree of the three equally parsimonious trees is shown in
Fig. 4, with bootstrap values (Felsenstein 1985) provided for
each monophyletic group. To test whether our cytochrome b
data set contained nonrandom and, thus, informative phylo-
genetic information, a comparison between the number of
steps required to produce our observed and a distribution of
minimum steps from 200 randomized-data trees was made
(Archie 1989a, 1989b). For each randomized data set,
minimum-length trees were estimated using PAUP (with
options HOLD = 10, MULPARS and SWAP = GLOBAL). The
minimum tree length of 426 for the three equally parsimoni-
ous topologies generated from the observed data was signifi-
cantly less (one-tailed 1 = 564.8, df = 199, P < 0.001) than
the mean length (561.8) from the 200 randomized data trees.
In addition, the random topology distributions for the equal-
weight trees and the two weighted trees all demonstrated sig-
nificant skewness (g/ = —0.534; P < 0.01 for all three
analyses). While interpretations of results from resampling
algorithms in general are controversial, we do believe that
the results from these analyses clearly indicate that the
sequencing of the cytochrome b gene region yielded signifi-
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Fig. 4. A strict consensus tree for three equally parsimonious topologies for Gambusia derived
from up to 402 bases of a segment of the mitochondrial cytochrome b gene. Bootstrap values
(percentages of 200 replicates) are given for each node. ‘‘Region’” identifies general geographic

areas from which specimens were obtained.
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cant nonrandom phylogenetic information suitable for esti-
mating a hy pothetical evolutionary topology for these 25 taxa.

The second analysis, weighting first and second codon
position substitutions two and four times, respectively,
resulted in four equally parsimonious trees of total length 499
and a CI of 0.48 or 0.41, excluding uninformative charac-
ters. A strict consensus tree of the four equally parsimonious
trees is shown in Fig. 5. The final analysis, weighting trans-
versions four times transitions, yielded one tree of total
length 695 (Fig. 6). An identical tree was obtained when
transversions were weighted five through eight times.

All three analytical approaches yielded several phylo-
genetic patterns in common. Gambusia luma was consis-
tently depicted as the most basal clade. This result was
unexpected, but not unlikely given previous difficulty in
assigning this species to a particular species-group. For
instance, G. luma has been placed in the punctata species-
group (Rosen and Bailey 1963; Rauchenberger 1989) and the
nobilis species-group (Rivas 1963). The next most basal
clade contained G. rachowi. Although they were placed in
the genus Gambusia by Rosen and Bailey (1963) and
Rauchenberger (1989), other investigators have considered
them to be in a separate but closely related genus called
Heterophallus (Regan 1914; Hubbs 1926). Our data support
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G. rachowi being a distinct, basal member of the genus, but
placing it in a separate genus would render Gambusia para-
phyletic. We believe that G. rachowi should remain in the
genus Gambusia until a phylogeny of the entire family
Poeciliidae is available.

In addition to the above patterns, all three phylogenetic
analyses resulted in trees that contained the following mono-
phyletic groups, many of which correspond to traditional
species-group assignments (Table 1): G. affinis + G. hol-
brooki of the affinis species-group + G. geiseri of the senilis
species-group + G. heterochir of the nobilis species-group;
G. caymanensis + G. oligosticta + G. puncticulata +
G. yucatana + G. hubbsi + G. manni of the puncriculata
species-group + G. nicaraguensis of the nicaraguensis
species-group; G. melaplura + G. wrayi, Antillean mem-
bers of the nicaraguensis species-group; G. eurystoma +
G. sexradiara of the nobilis species-group; G. punctata +
G. rhizophorae of the punctata species-group; G. hurtadoi of
the senilis species-group + G. virtata; and G. marshi +
G. panuco of the panuco species-group.

Perhaps the most unusual finding was the sister relation-
ship between G. hurtadoi of the senilis species-group and
G. vittata of the subgenus Heterophallus (Rauchenberger
1989). Gambusia vittata has been considered by some to be
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Fig. 5. A strict consensus tree for four equally parsimonious
topologies for Gambusia derived from up to 402 bases of a
segment of the mitochondrial cytochrome b gene. For this
analysis, first- and second-codon positions were weighted two
and four times, respectively. Bootstrap values (percentages of
200 replicates) are given for each node.
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closely related to G. marshi and G. panuco of the panuco
species-group (Rauchenberger 1989), while others have
placed it in its own genus, Flexipenis (Rivas 1963). Our data
suggest that G. vitrata is not only a member of the genus
Gambusia, but together with G. hurtadoi is sister to the
panuco species-group. This pattern was found in one of the
three equally parsimonious trees with substitutions equally
weighted and in the trees from the other two analyses.
The puncticulata species-group was examined in detail by
Fink (1971a). He suggested that the nominal forms, as used
herein, represented a single species; he synonymized the
eight forms in the group under the name G. puncticulata as
follows: G. puncticulata puncticulata (= G. puncticulata,
G. oligosticta, G. caymanensis, G. hubbsi, and G. howelli);
G. p. manni, G. p. bucheri, G. p. baracoana, and G. p.
yucatana. The DNA-based trees support his view in part.
Gambusia puncticulata s.str. appears to be closely related to
G. oligosticta and G. caymanensis; however, G. hubbsi did
not group with G. p. puncticulata but with G. manni, as
Greenfield and Wildrick (1984) and Rauchenberger (1989)
hypothesized. Based on examinations of morphological char-
acters of the puncticulata species-group and allozyme data
from G. yucatana, G. hubbsi, and G. caymanensis, Green-
field and Wildrick (1984) hypothesized that the puncticulata
clade could be divided into three distinct groups: the yuca-
tana complex containing G. yucatana, which they believed
warranted species-level status; the puncticulara forms
(= G. oligosticta, G. puncticulata, G. howelli, and G. cay-
manensis); and the hubbsi forms (G. bucheri, G. baracoana,

Can. J. Zool. Vol. 73, 1995

Fig. 6. The single minimum-length topology for Gambusia
derived from up to 402 bases of a segment of the
mitochondrial cytochrome & gene when transversions were
weighted four times transitions. Bootstrap values (percentages
of 200 replicates) are given for each node.
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G. monticola, G. manni, and G. hubbsi). Our phylogeny
supports their hypothesis with the exception of their place-
ment of G. yucatana as the sister-species to all Antillian
Gambusia; our data suggest that it is sister to only the punc-
ticulata forms. In addition, unlike previous investigators, we
found that G. nicaraguensis is not sister to Antillean mem-
bers of the hypothesized nicaraguernsis group (G. wrayi and
G. melaplura; Table 1), but is either the most basal member
of the puncticulata species-group or sister to G. manni and
G. hubbsi of the puncticulata species-group.

Differences among the phylogenies obtained from the
three different weighting schemes appear to be associated
with more weakly supported basal nodes and the placement
of particular problematic taxa. For instance, G. hispaniolae
is sister to G. wrayi + G. melaplura when substitutions are
given equal weighting; however, when first and second posi-
tions are weighted differently, G. hispaniolae is either sister
to G. wrayi + G. melaplura (one of four equally parsimoni-
ous trees) or is the next most basal clade following the clades
of G. luma and G. rachowi (three of four equally parsimoni-
ous trees). Alternatively, when tranversions are weighted
four times transitions, G. hispaniolae is sister to Antillean
members of the punctata species-group. All bootstrap values
for these alternative patterns are below 50%. These problems
are not, however, unique to this study. Rauchenberger
(1989) hypothesized G. hispaniolae to be a member of the
nicaraguensis species-group, while Fink (1971b) placed
G. hispaniolae with Antillean members of the nicaraguensis
species-group. We believe problems such as these can be
resolved by examining sequence data from other genes that
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exhibit greater variability in the more conservative first and
second positions and (or) by looking at more conservative
noncoding regions.

Based on a cladistic analysis of the entire genus, Rauchen-
berger (1989) recognized three subgenera of Gambusia:
Heterophallina, Arthrophallus, and Gambusia (see Table 1).
Heterophallina was defined by two synapomorphies, distinc-
tively shaped hooks on rays 4p and 5a of the gonopodium and
a unique morphology of the medial teeth of the tooth plate of
the third intrapharyngobranchial (IPB3). Originally (Hubbs
1926), Heterophallina included G. vittata, G. panuco, and
G. regani (G. marshi was not described yet). However,
Rauchenberger (1989) chose to include G. rachowi and
G. echeagayari. The DNA-based phylogeny supports the
close relationships of members of the panuco species-group
and G. virtara, but does not support placement of rachowi
species group members in the subgenus. It is likely that the
distinctively shaped hooks of the gonopodium evolved inde-
pendently, and the IBP3 teeth with medial serrate pad charac-
ter is found in only three of the six species assigned to the
subgenus.

The subgenus Arthrophallus is defined by the presence of
a distinct break in the infraorbital section of the cephalic
sensory canal system, leaving two discontinuous grooves.
Rauchenberger (1989) stated that it is found “‘in all mem-
bers’* (p. 37); however, in actuality it is missing in three
species (G. krumholzi, G. eurystoma, and G. sexradiata).
Interestingly, the trees based on the DNA sequence data sug-
gest the character may be a synapomorphy of the clade that
contains G. affinis, G. holbrooki, G. heterochir, and
G. geiseri, as shown in Figs. 4 and 5, with the independent
evolution of it in G. hurtadoi.

Seven synapomorphies define the subgenus Gambusia,
which contains the puncticulata, punctata, and nicaraguensis
species-groups. One of the seven characters was, however,
variable between left and right sides of the same individual
and may not be reliable (Rauchenberger 1989). Our trees,
based on transversions being weighted four times transitions,
support a close relationship among members of the puncti-
culata and nicaraguensis species-groups, but not the punc-
tata species-group.

The data reported here are an important addition to our
understanding of the systematics of Gambusia, because the
cytochrome b sequence was informative about the affinities
of key taxa whose relationships, based on morphological
data, are in dispute. However, we believe important knowl-
edge and insight can be gained from further analysis of addi-
tional morphological and molecular data from these taxa.

Test of the molecular clock hypothesis

One of the most enduring controversies in molecular evolu-
tion has been whether rate constancy exists at the molecular
level and, if so, whether it is a local or global phenomenon
(Li and Graur 1991)? Since these questions, in the form of
a molecular clock hypothesis, are central to neutral theory
(Kimura 1987), and because mitochondrial DNA variation
has provided valuable data for testing this hypothesis (Adachi
et al. 1993), we evaluated our cytochrome b sequences for
evidence of rate constancy. Our analysis followed the proce-
dure described by Felsenstein (1993). Using the three equal-
weighted trees as the best hypothetical constructs, we com-
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pared the log-likelihood estimates from the programs DNAML
and pNaMLK of pHYLIP for each of three topologies. To
alleviate numerical inflation due to near zero branch lengths,
five branches representing replicate or nearly identical taxa
were pruned from the trees. These branches included one
G. holbrooki, one G. affinis, one G. yucatana, one G. rhizo-
phorae, and one G. caymanensis. Analyses that included
these sequences as replacements for their respective counter-
parts resulted in identical overall conclusions.

The same single tree was identified by both bNAML and
DNAMLK as having the highest likelihood estimate, given the
data and topologies provided. This topology is represented
by Fig. 4 with the exceptions that G. hurtadoi, G. vittata,
G. marshi, and G. panuco were placed as a sister-clade to
G. affinis, G. holbrooki, G. geiseri, and G. heterochir. The
log-likelihood estimate for this tree restrained by the assump-
tion of a molecular clock (DNAMLK) was —1918.7, which
was significantly worse than the value derived without this
constraint (DNAML = —1888.8; x2 = 59.8,df = 22, P <
0.001; topologies and copies of analyses are available from
the authors). Our conclusion from this analysis is that for the
parsimony-based representation of the evolutionary history
of these taxa, there exists evidence for rejecting the hypothe-
sis of a global molecular clock. Rejection of rate constancy
is certainly not unique to this study but it does represent the
first logical step in identifying the major factors responsible
for forming the boundaries within which this genus evolved.
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