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1  |  INTRODUC TION

Unravelling the mechanisms that drive biological diversity remains a 
major challenge in evolutionary biology. With more than 28,000 spe-
cies, teleost fishes are the most diverse lineage of vertebrates, and 
thus an ideal system to address questions regarding mechanisms 
and geographical settings of diversification. A large portion of the 
phenotypic diversity of bony fishes has been produced through the 

process of adaptive radiation, the rapid proliferation of multiple eco-
logically distinct species from a common ancestor (Schluter, 2000). 
One of the most extraordinary examples of both adaptive radiation 
and explosive diversification is represented by the cichlid fishes 
inhabiting the East African Great Lakes (Meyer, 1993). The evolu-
tionary success of the cichlids, unmatched among vertebrates, has 
been promoted by a combination of different factors, such as lim-
ited dispersal, habitat specialization, and sexual selection for nuptial 
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Abstract
Adaptive radiation of freshwater fishes was long thought to be possible only in lacus-
trine environments. Recently, several studies have shown that riverine and stream 
environments also provide the ecological opportunity for adaptive radiation. In this 
study, we report on a riverine adaptive radiation of six ecomorphs of cyprinid hill-
stream fishes of the genus Garra in a river located in the Ethiopian Highlands in East 
Africa. Garra are predominantly highly specialized algae-scrapers with a wide distribu-
tion ranging from Southeast Asia to West Africa. However, adaptive phenotypic di-
versification in mouth type, sucking disc morphology, gut length and body shape have 
probably been found among these ecomorphs in a single Ethiopian river. Moreover, 
we found two novel phenotypes of Garra (“thick-lipped” and “predatory”) that had not 
been discovered before in this species-rich genus (>160 species). Mitochondrial and 
genome-wide data suggest monophyletic, intrabasin evolution of Garra phenotypic 
diversity with signatures of gene flow from other local populations. Although sympa-
tric ecomorphs are genetically distinct and can be considered to being young species 
as suggested by genome-wide single nucleotide polymorphism data, mitochondrial 
DNA was unable to identify any genetic structure suggesting recent and rapid specia-
tion events. Some data suggest a hybrid origin of the novel “thick-lipped” ecomorph. 
Here we highlight how, driven by ecological opportunity, an ancestral trophically 
highly specialized lineage is likely to have rapidly radiated in a riverine environment 
promoted by the evolution of novel feeding strategies.
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coloration and mating behaviour (Meyer et al., 1990; Sturmbauer 
et al., 2008; Verheyen et al., 1996). It has been suggested, how-
ever, that trophic radiation had preceded the diversification driven 
by other factors at least in cichlids of Lake Tanganyika (Muschick 
et al., 2014; Rüber et al., 1999), a cradle of all other East African 
haplochromine radiations (Irisarri et al., 2018; Ronco et al., 2021). 
Adaptive radiations and diversification bursts were found not only 
in cichlids, but also in other fish groups, even though at smaller scale, 
and often in a parallel manner—coregonids, Arctic charrs and stick-
lebacks (e.g., Brodersen et al., 2018; DeFaveri and Merilä, 2013; 
Jacobs et al., 2020; McKinnon & Rundle, 2002; Præbel et al., 2013; 
Peichel et al., 2001; Schluter, 2000; Skúlason, 1999; Terekhanova 
et al., 2014) are some of the best known examples of intralacustrine 
radiations.

The most well-supported cases of monophyletic, closely related 
fish species that are believed to have arisen through an adaptive 
radiation event have been described from lakes rather than rivers 
(Meyer et al., 1990; Seehausen, 2006; Sturmbauer, 1998; Taylor, 
1999). Riverine environments had long been considered to be not 
suitable for adaptive radiation because of its unstable hydrological 
regimes, reduced habitat diversity, and the commonly shallow and 
narrow watercourses that might facilitate gene flow (Seehausen 
& Wagner, 2014). However, during the last two decades, several 
examples of fish adaptive radiations occurring in rivers have been 
reported (Burress et al., 2018; Dimmick et al., 2001; Levin et al., 
2020; Melnik et al., 2020; Piálek et al., 2012; Schwarzer et al., 2011; 
Whiteley, 2007). Although several cases of riverine diversification 
of cichlid fishes are considered as remnants of adaptive radiations 
that occurred in palaeo-Lake Makgadikgadi before it dried up in 
the Holocene (Joyce et al., 2005), mounting evidence suggests that 
some fish species flocks of species other than cichlids have diver-
sified within rivers (Levin et al., 2019, 2020; Melnik et al., 2020; 
Roberts, 1998; Roberts & Khaironizam, 2008).

In the present study, we investigated a highly diverse fish group 
that presumably diversified in riverine environments. The genus 
Garra is a species-rich lineage of labeonine cyprinids comprising 
more than 160  species that is distributed from Southeast Asia to 
West Africa (Fricke et al., 2021; Yang et al., 2012). Garra are mostly 
moderate-sized fish (usually less than 20 cm in length) with a sucking 
gular disc that inhabit the rhithron zone of river systems (Kottelat, 
2020). They are predominantly highly specialized algae-scrapers 
that graze periphyton from rocks and stones using widened jaws 

equipped with horny scrapers. However, adaptations to still waters 
such as caves or lacustrine environments have been documented 
in Garra, although rarely, accompanied by a reduction of the gular 
disc and a change of the foraging strategy from algae-scraping to 
planktivory (Geremew, 2007; Kirchner et al., 2021; Kottelat, 2020; 
Segherloo et al., 2018; Stiassny & Getahun, 2007; www.brian​coad.
com).

The Ethiopian Highlands are recognized as a centre of Garra di-
versity within Africa (Golubtsov et al., 2002; Stiassny & Getahun, 
2007), where 13 described species out of the total 23 found in 
Africa are recorded (Moritz et al., 2019). An assemblage of six Garra 
ecomorphs (ecomorph sensu Williams, 2013) exhibiting extreme 
morphological diversity was recently discovered in the Sore River 
(the White Nile Basin) in southwestern Ethiopia during a survey of 
Ethiopian fishes (Golubtsov et al., 2012). In particular, two of the six 
ecomorphs display features not found elsewhere within the genus: 
an ecomorph with a pronounced predatory morphology (large-
sized, large-mouthed, with reduced sucking disc and a short gut that 
is equal to body length) and one with “rubber” lips and prolonged 
snout region (Figure 1, Table 1). The other four ecomorphs from the 
Ethiopian Garra assemblage drastically differ in mouth and gular disc 
morphology as well as in body shape (Figure 1).

Our goals were two-fold: (i) to investigate the morpho-ecological 
relationships of six Garra sympatric ecomorphs from the Sore River, 
and (ii) to test whether this assemblage has evolved sympatrically. In 
an effort to elucidate the population structure and evolutionary his-
tory of these ecomorphs we used both mitochondrial DNA (mtDNA, 
cytochrome b) and a genome-wide nuclear approach based on loci 
obtained by double digest restriction-site associated DNA (ddRAD).

2  |  MATERIAL S AND METHODS

2.1  |  Study area

The Sore River is a headwater tributary of the Baro-Akobo-Sobat 
drainage in the White Nile basin (southwestern Ethiopia, northern 
East Africa). It drains the Ethiopian Highlands close to the south-
western escarpment. The region is covered by moist Afromontane 
forest that has been drastically shrinking in recent decades due 
to agricultural development (Dibaba et al., 2019). The Sore is qui-
tre with a length of ~160 km, its catchment area is ~2000 km2 and 

F I G U R E  1  (a) Garra ecomorphs 1–3 
from the Sore River: 1, “generalized”: 
136 mm SL; 2, “stream-lined”: 99 mm SL; 
3, “narrow-mouth”: 100 mm SL. (b) Garra 
ecomorphs 4–6 from the Sore River: 4, 
“wide-mouth”: 100 mm SL; 5, “predator”: 
193 mm SL; 6, “thick-lipped”: 128 mm 
SL [Colour figure can be viewed at 
wileyonlinelibrary.com]

(a) (b)
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characterized by substantial seasonal variation of rainfall (dry season 
from December to March) (Kebede et al., 2014). The elevation dif-
ference between the Sore source (altitude of ~2215 m asl, above sea 
level) and its confluence with the Gabba (Geba) River (alt. 963 m asl) 
is 1.25  km. The Sore River basin shares drainage boundaries with 
two of six major watersheds of Ethiopia: Blue Nile in the northeast 
and Omo-Turkana in the southeast.

We sampled the middle reaches of the Sore River at two sites: (i) 
at the City of Metu (8°18′42″N, 35°35′54″E, alt. 1550 m asl) and (ii) 
~35 km downstream along the river course (8°23′56″N, 35°26′18″E, 
alt. 1310 m asl). The river width at the rapids sampled was 20–40 m 
at the beginning of the rainy season, depth <1 m, and the bottom 
consisted of rocks and large boulders. The fish fauna of the river seg-
ment under consideration includes (apart from Garra spp.) a species 
flock of Labeobarbus (Levin et al., 2020), Enteromius cf. pleurogramma 
(Boulenger 1902), Labeo cf. cylindricus Peters 1852, Labeo forskalii 
Rüppell 1835, Chiloglanis cf. niloticus Boulenger 1900 (at the lower 
site only) and introduced Coptodon zillii (Gervais 1848). The pres-
ence of the stony loach (Afronemacheilus) reported by Getahun and 
Stiassny (1998) from the Sore River at Metu could not be confirmed 
(Melaku et al., 2017; Prokofiev & Golubtsov, 2013; present study). 
One hundred kilometres west, from the lowland part (alt. ~500 m 
asl) of the same river drainage, >100 fish species are recorded 
(Golubtsov & Darkov, 2008; Golubtsov et al., 1995) and >115 spe-
cies from the Sudd and White Nile in Sudan and South Sudan (Moritz 
et al., 2019; Neumann et al., 2016).

2.2  |  Sampling

Garra samples from the Sore River were collected using a battery-
driven electrofishing device (LR-24 Combo Backpack, Smith-Root), 

cast and frame nets in June 2012 and April 2014. In 2011–2014 
comparative Garra samples were collected from nine sites in six 
main Ethiopian basins (Figure 2; Table S1). Fish sampling was con-
ducted under the umbrella of the Joint Ethiopian–Russian Biological 
Expedition (JERBE) with the permissions of National Fisheries and 
Aquatic Life Research Center (NFALRC) under Ethiopian Institute of 
Agricultural Research (EIAR) and Ethiopian Ministry of Science and 
Technology (presently Ministry of Innovation and Technology). Fish 
were killed with an overdose of MS-222 anaesthetic, first preserved 
in 10% formalin and then transferred to 70% ethanol. From each 
specimen fin tissue samples were fixed with 96% ethanol. A subset 
of the fish samples was photographed using a Canon EOS 50D cam-
era. All specimens (Table S1) are deposited at the A.N. Severtsov 
Institute of Ecology and Evolution, at the Russian Academy of 
Sciences, Moscow, under provisional labels of JERBE.

2.3  |  Morphological analysis

2.3.1  |  Morphometry

In total, 28 morphometric characters from 107 individuals of all eco-
morphs from the Sore River were examined following Hubbs and 
Lagler (1958) with additions from Menon (1964): standard length 
(SL), head length (HL), snout length (R), eye diameter (O), postorbi-
tal distance (PO), interorbital distance (IO), head width (HW), head 
height at nape (HH), head height at mid-of-eye (Hh), mouth width 
(MW), disc length (DL), disc width (DW), maximal body height (H), 
minimal body height at caudal peduncle (h), predorsal length (PL), 
postdorsal length (PDL), prepelvic length (PPL), preanal length (PAL), 
caudal peduncle length (CPD), dorsal fin base length (DFL), dorsal fin 
depth (DFP), anal fin base length (AFL), anal fin depth (AFD), pectoral 

Name used in the 
text General description

No. 1, “generalized” Well-developed round gular disc of type C with free posterior margin 
(disc classification follows Stiassny & Getahun, 2007). Body shape is 
generalized for Garra.

No. 2, 
“stream-lined”

Slender streamlined body with slim caudal peduncle and increased 
pectoral fins. Disc of type C.

No. 3, 
“narrow-mouth”

Disc is reduced in size, elongated, oval-shaped (closer to type A). 
Narrow mouth often with groove on lower jaw.

No. 4, “wide-mouth” Disc is reduced in size, triangle-shaped. Wide mouth with significantly 
enlarged labellum (sensu Kottelat, 2020). Disc of type B in degree of 
development.

No. 5, “predator” Completely or almost completely reduced gular disc (type A when 
presented). Wide head and mouth. This ecomorph achieves larger 
size compared to the other ecomorphs. Largest individuals have a 
nuchal hunch and almost terminal mouth with a bony projection on 
the lower jaw and matching incision on the upper jaw.

No. 6, “thick-lipped” Greatly developed lips, referred to as “rubber lips” (Matthes, 1963). 
Intermediate lobe of the lower lip is ball-shaped and unattached. 
Gular disc is greatly reduced, oval-shaped (type A). Only two 
individuals recorded.

TA B L E  1  Common names of the six 
ecomorphs of African Garra from the 
Sore River, and the preliminary qualitative 
descriptions used in the field to identify 
each form
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fin length (PFL), ventral fin length (VFL), pectoral–ventral fin dis-
tance (PV), ventral–anal fin distance (VA), and distance between anal 
opening and anal fin (DAA). Measurements were made using a digital 
caliper (to the nearest 0.1 mm). All measurements were performed 

by one operator for the purpose of consistency as recommended by 
Mina et al. (2005).

Measured individuals had body length ranging from 43.6 to 
185.0 mm standard length (SL) (Table 2). The proportions of head 

F I G U R E  2  Sampling sites of Garra in the Ethiopian Highlands and Ethiopian Rift Valley; locations 1 and 2 are in the Sore River [Colour 
figure can be viewed at wileyonlinelibrary.com]

Ecomorphs

Morphology

mtDNA RAD-seq
Measurements (standard 
length range, mm)

Gut length 
and diet

1 27 (71.5–151.0) 18 27 22

2 17 (70.9–160.2) 7 17 13

3 19 (49.3–100.6) 13 17 11

4 20 (49.3–90.6) 10 16 13

5 15 (43.6–185) 14 23 11

6 2 (118.4; 139.4) — 2 2

Intermediate 
phenotype

6 (59.3–105.2) — 5 5

Total 106 62 107 77

TA B L E  2  DNA and morphology sample 
numbers of Garra ecomorphs from the 
Sore River

https://onlinelibrary.wiley.com/
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and body were used for principal component analysis (PCA); mea-
surements of head parts were divided for head length, and mea-
surements of body parts were divided for SL. The gular disc in some 
specimens of the “predator” ecomorph was greatly reduced which 
hampered the detection of its borders. To justify the values of this 
character, identical intermediate values were arbitrarily assigned for 
all specimens of this ecomorph. Input data were first standardized 
using the scaling procedure implemented in the prcomp R package, 
and then the PCA was performed on the variance–covariance matrix.

2.3.2  |  Gut length and preliminary assay of a diet

Intestines were taken from the body cavity of 62 preserved speci-
mens of all ecomorphs except for “thick-lipped” (represented by only 
two specimens), and measured using a ruler to the nearest 1 mm. 
The sample size for each ecomorph is provided in Table 2. The SL 
of examined individuals varied from 40 to 131 mm; one individual 
of ecomorph 5 had an extreme length of 185 mm. The ratio of gut 
length (GL) to SL was used for subsequent analyses. A Kruskal–
Wallis test with Dunn's post hoc test was applied to check for differ-
ences between the groups with adjustment p < .05 after controlling 
for multiple testing with the false discovery rate (FDR) (Benjamini & 
Hochberg, 1995). The dependence of GL on SL was visualized using 
scatterplots and regressions. The R-packages ggplot2 and PMCMR 
were used to create plots and to test whether the observed differ-
ences were statistically significant.

Diet was assessed for the same individuals whose intestine 
length was measured. The main ecological and systematic groups 
were identified using a Micromed MC-2-ZOOM stereomicroscope 
and Olympus CX41  microscope. A composite measure of diet, an 
index of relative importance, IRI (Hart et al., 2002), was used to 
assess the contribution of different components to a diet. The diet 
components were grouped into several items: (i) periphyton, (ii) ben-
thos, (iii) macrophytes and (iv) others.

2.3.3  |  DNA sampling, extraction, amplification and 
sequencing—mtDNA data

DNA samples (n  =  107) were collected from Garra inhabiting the 
Sore River near the City of Metu in 2012 and 2014 from all six forms 
(Table 2 for details). For comparison, additional DNA samples (n = 20) 
were collected from eight Garra species inhabiting all main drain-
ages of Ethiopia (10 localities—see map of sampling in Figure 2). Total 
genomic DNA was extracted from ethanol-preserved fin tissues 
using the BioSprint 15 kit for tissue and blood (Qiagen). Sequences 
of the mitochondrial gene cytochrome b (cytb), 989  bp in length, 
were amplified (see polymerase chain reaction [PCR] conditions in 
Material S2; Palumbi, 1996; Perdices & Doadrio, 2001). PCR prod-
ucts were visualized on 1% agarose gels, purified with ExoSAP-IT 
and sequenced at the Papanin Institute of Biology of Inland Waters 
(Russian Academy of Sciences) using an ABI 3500 sequencer. All new 

sequences were deposited in GenBank (accession nos.: MZ570972-
MZ571096 and MZ66554-MZ665542—Table S1 for details).

2.4  |  Analysis of mtDNA data

All sequences were aligned and edited using the muscle algorithm 
(Edgar, 2004) as implemented in mega 6.0 (Tamura et al., 2013). A final 
set that also includes comparative material from GenBank (African 
and non-African Garra as well as outgroups) encompassed 143 cytb 
sequences (accession nos. are provided in Table S1). Akrokolioplax 
bicornis and Crossocheilus burmanicus were included as outgroups 
according to previously published phylogenies (Yang et al., 2012).

Gene tree reconstruction was performed using both maximum-
likelihood (ML) and Bayesian inference (BI) approaches. Prior to 
these analyses, all sequences were collapsed into common haplo-
types using alter (Glez-Peña et al., 2010). We determined the best 
fit models of nucleotide substitution for each codon position of cytb 
and optimal partitioning scheme using modelfinder (as implemented 
in iq-tree 1.6.12; Kalyaanamoorthy et al., 2017; Nguyen et al., 2015) 
for ML inference or partitionfinder 2.1.1 (Lanfear et al., 2012) for (BI 
under the Bayesian Information Criterion (BIC). The partition scheme 
selected by modelfinder (codon position 1, K2P+R2; codon position 
2, HKY+F+I; codon position 3, TN+F+G4) was subsequently used in 
ML searches with iq-tree, using 1,000 bootstrap replicates.

BI was carried out in mrbayes version 3.2.6 (Ronquist et al., 2012). 
The selected partition scheme was as follows: codon position 1 with 
K80+I+G, codon position 2 with HKY+I, and codon position 3 with 
GTR+G. Two simultaneous analyses were run for 107 generations, 
each with four Monte Carlo Markov chains (MCMC) sampled every 
500 generations. Convergence of runs was assessed by examination 
of the average standard deviation of split frequencies and the po-
tential scale reduction factor. In addition, stationarity was confirmed 
by examining posterior probability, log likelihood, and all model pa-
rameters by the effective sample sizes (ESSs) in the program tracer 
version 1.6 (Rambaut et al., 2014). The gene trees resulting in ML 
and BI analyses were visualized and edited using figtree version 1.4.4 
(Rambaut, 2014). A haplotype network was constructed using the 
median joining algorithm (Bandelt et al., 1999) in popart 1.7 (Leigh & 
Bryant, 2015) with the default value of epsilon (0).

2.5  |  ddRAD-seq library preparation

High-molecular-weight DNA was isolated from fin tissue preserved 
in ethanol using a QIAamp DNA Mini Kit (Qiagen) or obtained with a 
salt-based DNA extraction method (Aljanabi & Martinez, 1997) fol-
lowed by purification using a CleanUp Standard kit (Evrogen). The 
quantity of dsDNA was measured using a dsDNA HS Assay Kit for 
fluorometer Qubit 3 (Life Technologies). A ddRAD-library was con-
structed following the quaddRAD protocol (Franchini et al., 2017) 
using restriction enzymes PstI and MspI. In total, 77 DNA sam-
ples of Garra ecomorphs from the Sore River (see Table 2) and 11 

info:refseq/MZ570972
info:refseq/MZ571096
info:refseq/MZ66554
info:refseq/MZ665542
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DNA samples from five other species of Ethiopian Garra from ad-
jacent basins were sequenced by two independent runs of Illumina 
HiSeq2500 and Illumina X Ten (2 × 150 bp paired-end reads). The 
raw sequencing data were demultiplexed by the sequencing pro-
vider using outer Illumina TruSeq dual indexes.

2.6  |  Processing of RAD-seq data

The resulting reads were trimmed for remaining adapters and low-
quality reads using cutadapt implemented in the trim galore 0.4.5 
package (https://github.com/Felix​Krueg​er/TrimG​alore - Martin, 
2011). Read quality was assessed with fastqc 0.11.7 (Andrews & 
Krueger, 2010) and multiqc 1.7 (Ewels et al., 2016) before and after 
trimming. Further demultiplexing of individually barcoded samples, 
construction and cataloguing of RAD-loci and single nucleotide 
polymorphism (SNP) calling were done with stacks 2.41 (Rochette 
et al., 2019). Identification and removal of PCR duplicates were 
done using the “clone_filter” module of stacks. The stacks module 
“process_radtags” was used to demultiplex reads by the dual index 
inner barcodes and obtain separate fastq files for each individual. 
Samples that failed to produce more than 100,000 reads were ex-
cluded from further processing. To additionally evaluate data qual-
ity and identify possible contaminated samples, the reads were 
mapped to the reference genome of the common carp Cyprinus car-
pio (GCF_000951615.1) using bowtie2 2.3.5 (Langmead & Salzberg, 
2012) with “--local-sensitive” presettings. Only Read 1 (R1) fastq 
files were used for downstream processing and analyses. Finally, R1 
reads were trimmed at their 3′ ends to a uniform length of 130 bp 
to reduce the influence of sequencing error (due to decreased base 
quality at the 3′ end).

The de novo pipeline of stacks was used to assemble loci and per-
form genotype calling. We selected optimal parameters using the 
approach suggested by Paris et al. (2017). Following the aforemen-
tioned procedure, we found that a minimum stack depth (-m) of 5, 
distance allowed between stacks (-M) of 3 and maximum distance 
required to merge catalogue loci (-n) of 5 provided the best balance 
between data quality and quantity for our data set (Figure S1).

2.7  |  Population genomic analyses

Individual genotypes of sympatric Garra ecomorphs from the Sore 
River were exported to a vcf file using the “populations” module of 
stacks with the following settings: (i) loci genotyped in at least 90% 
of samples (-r 0.90) were kept; (ii) SNPs with a minor allele frequency 
(--min-maf) less than 0.04 and a maximum observed heterozygosity 
(--max_obs_het) above 0.99 were pruned; and (iii) to avoid inclu-
sion of closely linked SNPs, only a single SNP per RAD locus was 
retained. vcftools 0.1.16 (Danecek et al., 2011) was applied for fur-
ther filtering of the data set based on mean coverage and fraction of 
missing data for each sample. Samples with more than 20% of miss-
ing data were removed from further analyses. A high-quality data set 

of 679 SNPs and 77 individuals was used for downstream population 
genetics analyses.

First, PCA was performed using the “glPca” function of the R-
package adegenet 2.1.1 (Jombart, 2008; Jombart & Ahmed, 2011). 
Next, rmaverick 1.0.5 (former MavericK; Verity & Nichols, 2016) was 
used to infer population structure. This program estimates evidence 
for different numbers of populations (K), and different evolutionary 
models via generalized thermodynamic integration (GTI). A range of 
K values between 1 and 10 were explored, using 300 000 burn-in 
MCMC iterations and 10,000 sampling iterations. Convergence of 
MCMC was automatically tested every 1,000 burn-in iterations 
by activating option “auto_converge.” This allows exit burn-in iter-
ations when convergence is reached and immediately proceeds to 
sampling iterations. Parameter “rungs” was set to 10 (number of 
multiple MCMC chains with different “temperature” to run simul-
taneously). Both “no admixture” and “admixture” models were run 
and compared by plotting values of the posterior distribution and 
overall model evidence in log space (log-evidence) (Figures S2–S5). 
According to this comparison, the admixture model is decisively sup-
ported over the no admixture model and used here to report the 
results. The same protocol was followed for consecutive hierarchical 
rmaverick runs for the identified clusters. Finally, global and pairwise 
Reich–Patterson FST values (Reich et al., 2009) with respective 95% 
confidence intervals for ecomorphs/genetic clusters were calculated 
using the R script from Junker et al. (2020). Basic genetic diversity 
statistics (heterozygosity, nucleotide diversity, number of private al-
leles, etc.) were calculated using the “populations” module of stacks.

To test for gene flow between ecomorphs/genetic clusters, 
we used Patterson's D statistic (ABBA-BABA test), along with the 
f4-ratio statistic (Patterson et al., 2012) and its f-branch metric 
(Malinsky et al., 2018), as implemented in the dsuite 0.4  software 
package (Malinsky et al., 2021). Patterson's D statistic is a widely 
used and robust tool to detect introgression between populations or 
closely related species, and to distinguish it from incomplete lineage 
sorting (ILS). The f4-ratio statistic is a similar method aiming to esti-
mate an admixture fraction. The f-branch metric is based on 4-ratio 
results and serves to assign gene flow evidence to specific branches 
on a phylogeny. These tests were performed on a group containing 
ecomorphs/genetic clusters 2b, 3, 4 and 6, while the rest were used 
as an outgroup (in accordance with the results of our phylogenomic 
analysis).

2.8  |  Phylogenomic analyses

iq-tree 2.0.5 (Minh et al., 2020) was used for ML phylogenetic 
analyses of RAD-seq data. The first data set included one to three 
specimens of each Garra ecomorph from the Sore River and other 
Ethiopian Garra species from adjacent basins. Multiple sequence 
alignments of all loci and respective partition files were created 
using the “--phylip-var-all” option of the “populations” module of 
stacks. Heterozygous sites within each individual were encoded using 
IUPAC notation. During the analysis, each RAD-locus was treated as 

https://github.com/FelixKrueger/TrimGalore
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a separate partition with an independent best-fit substitution model. 
Node support values were obtained using an ultrafast bootstrap pro-
cedure (Hoang et al., 2018) with 1,000 replicates. We also used the 
SVDQuartets algorithm (Chifman & Kubatko, 2014) as implemented 
in paup* 4.0a168 (Swofford, 2003) to perform species-tree inference 
under the multispecies coalescent model using 18,988 SNPs (single 
random SNP per locus, minor allele frequency cutoff 0.04, maximum 
observed heterozygosity cutoff 0.99). Node support was estimated 
with 1,000 bootstrap replicates.

The second data set consisted of all genotyped specimens of 
sympatric Garra ecomorphs from the Sore River and a single, most 
closely related outgroup (G. cf. dembeensis from the Barokalu River, 
as revealed by the analysis of the first phylogenomic data set that 
included samples from all the localities in Figure 2). This data set was 
analysed with iq-tree as described above, except for the GTR+G sub-
stitution model that was used for each partition. The phylogenetic 
trees were visualized and edited using figtree 1.4.4 (Rambaut, 2014).

3  |  RESULTS

3.1  |  Trophic morphology

PCA of head and body proportions of six sympatric ecomorphs 
from the Sore River revealed five well-defined clusters (Figure 3a). 
Four clusters represent “narrow-mouth,” “wide-mouth,” “predator” 
and “thick-lipped” ecomorphs, while the fifth includes individuals 
from the “generalized” and “stream-lined” ecomorphs. The “preda-
tor” ecomorph is the most divergent. PC1 and PC2 explained 72.3% 
and 10.2% of the total variance, respectively. The eigenvectors with 
the highest eigenvalues for PC1 were head proportions—nine of 
the 10 most loaded (especially gular disc proportions, mouth width, 
interorbital distance and snout length). The same pattern was de-
tected for PC2—nine of the 10 most loaded characters belonged to 
head proportions (mainly disc length, mouth width, height of head at 
nape and at eyes, etc.; Table S2 for details).

After excluding the “predator” ecomorph, the “generalized” and 
“stream-lined” ecomorphs became more distinguishable with low 
overlap (Figure 3b). PC1 and PC2 explained 73.8% and 8.1% of the 
total variance, respectively. The most loaded eigenvectors of both 
PC1 and PC2 were from head proportions with few more contri-
butions of body proportion characters (Table S3). The difference 
between the “generalized” and “stream-lined” ecomorphs revealed 
in PC2 is explained by height of the head at both nape and eyes, 
interorbital distance, head width, body height as well as other char-
acters (Table S3).

3.2  |  Gut length and preliminary data on diet

Gut length varied consistently between ecomorphs (Figure 3c). 
Shortest guts (107–160% SL) were detected in the “predator” eco-
morph suggesting a predatory trophic type, while the longest guts 

were recorded in the “generalized” (285–799% SL) and “stream-
lined” (354–555% SL) ecomorphs that possessed the well-
developed gular disc and therefore are specialized algal grazers, 
as also shown by their gut contents (see below). Other ecomorphs 
had intermediate values of gut length: “narrow-mouth” ecomorph, 
124%–295% SL‘ and “wide-mouth” ecomorph, 175%–513% SL, re-
spectively. Broad intragroup variation is explained by an increase 
of gut length with body length detected in some ecomorphs 
(Figure 3d). Nevertheless, the similar-sized individuals are diver-
gent in gut length at the same manner shown in Figure 3c. The 
“predator” ecomorph having the shortest gut even displays a slight 
decrease of gut length ontogenetically that was previously re-
ported for a piscivorous mode of feeding among African cyprinids 
(Levin et al., 2019).

The preliminary inspection of gut contents revealed differences 
in the diet between some ecomorphs. The “generalized” and “stream-
lined” ecomorphs had permanently filled intestines full of periphyton 
(diatoms, green and charophyte algae; IRI = 99.98% for “generalized” 
and 97.99% for “stream-lined” ecomorphs, respectively) and rarely 
other items (larvae of water insects: mayflies, chironomids, simulids). 
The “narrow-mouth” ecomorph had a half-filled gut with dominat-
ing periphyton (IRI = 86.3%) with a notable portion of insect larvae 
(7.62%: predominantly chironomids, also mayflies, and simulids) and 
macrophytes (5.97%). The “wide-mouth” ecomorph had fewer filled 
intestines compared to the “narrow-mouth” ectomorph, but with 
strongly dominating periphyton in the diet (IRI = 99.49%). The gut 
of the “predator” ecomorph (shortest gut) frequently was empty, in-
cluding the largest individual (SL = 185 mm). When guts were filled, 
benthos-associated prey was strongly prevalent (IRI = 99.31%; may-
flies and chironomids).

3.3  |  Mitochondrial data

Both BI and ML analyses of cytb revealed monophyly of the genus 
Garra from the Sore River (Figure 4a). The closest relative (and an-
cestor lineage) is from the Barokalu River, a tributary of the Baro 
River (White Nile drainage). Both Sore and Barokalu rivers share a 
watershed in the Baro system and sampled localities are separated 
by only ~50  km. Divergence between Garra populations from the 
Sore and Barokalu is low (p-distance =0.0105 ± 0.0028) and com-
parable with maximum intradivergence in the Sore radiation (p-
distance =0.0111 ± 0.0033). The White Nile lineage is sister to the 
large clade of Ethiopian Garra from the Blue Nile and Lake Tana, 
Atbara-Nile, Ethiopian Rift Valley, and Omo-Turkana basins.

Phylogenetic analyses revealed that Ethiopian Garra are non-
monophyletic (Figure 4a). These results are in line with a recent study 
of Englmaier et al. (2020) that demonstrated paraphyly of Ethiopian 
Garra. Some lineages are of more ancient origin and closer to Asian 
lineages (G. tibanica from the Indian Ocean basin) or to lineages from 
West Africa (e.g., G. vinciguerra from the Blue Nile basin). The matri-
lineal tree of Ethiopian Garra includes up to 12 lineages. Taking into 
account that some species cluster together in one lineage (e.g., three 
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species from Lake Tana) or that some species were unavailable, we 
suggest that Garra from the Ethiopia Highlands is more diversified 
than previously recognized (Stiassny and Getahun, 2007).

The Sore River lineage is composed of two sublineages or 
haplogroups (highlighted by yellow and green in Figure 4a,b). A 
haplotype net constructed on 107 cytb sequences confirms the 
presence of two main haplogroups. The core haplotypes of these 
haplogroups are separated by five substitutions. Four of six eco-
morphs (“stream-lined,” “narrow-mouth,” “wide-mouth” and “pred-
ator”) share both haplogroups. The “green” haplogroup is prevalent 
in a number of haplotypes (18), and number of individuals (88), and 
found in five ecomorphs. The “generalized” ecomorph is presented 
exclusively in this haplogroup. In contrast, the “yellow” haplogroup 
(Figure 4b) is less frequent in our sample, with only eight differ-
ent haplotypes found in 19 individuals (17.7% of the individuals 

analysed). The “yellow” haplogroup consists of five ecomorphs as 
well. However, the “wide-mouth” ecomorph is much more common 
in this haplogroup (42% of all individuals) compared to the “green” 
one (6.97%).

3.4  |  RAD-seq data

3.4.1  |  Nuclear phylogeny

The phylogeny of Ethiopian Garra based on a concatenated set of 
RAD locus sequences (23,365 partitions and 3,075,180 total sites 
with 0% missing data; raw reads statistics is provided in File S2) is 
generally similar to that based on mtDNA data (Figure 4), but it has 
more strongly supported nodes (Figure 5a). Sympatric ecomorphs 

F I G U R E  3  (a) PCA of body and head proportions of six sympatric ecomorphs from the Sore River (n = 107). (b) PCA of body and head 
proportions of five sympatric ecomorphs from the Sore River (n = 90) excluding the most divergent sample of the “predator” ecomorph. X 
designates intermediate phenotypes. (c) Gut length of five sympatric Garra ecomorphs from the Sore River represented as violin boxplots. 
Middle points are the means, and the box shows the range respectively; samples are combined and each contains between seven (“stream-
lined” ecomorph) and 18 (“generalized”) individuals, for a total of 62 individuals. Different lowercase letters above the boxplots indicate 
significant differences between ecomorphs (p < .05, Kruskal–Wallis test with Dunn's post-hoc test and BH adjustment of the p-value—see 
descriptive statistics in File S1). (d) Dependence of gut length on body length in five Garra ecomorphs from the Sore River with smooth local 
regression lines (Loess regression). Designations of ecomorphs: 1, “generalized”; 2, “stream-lined”; 3, “narrow-mouth”; 4, “wide-mouth”; 5, 
“predator”; 6, “thick-lipped” [Colour figure can be viewed at wileyonlinelibrary.com]

(a)

(b)

(c)

(d)

https://onlinelibrary.wiley.com/


5538  |    LEVIN et al.

clustered together and form a monophyletic lineage, sister to the 
population from the same riverine basin—Baro drainage in the White 
Nile system (Figure 5a,b). The closest relative to Garra from the 
White Nile system is the Garra lineage in the G. dembeensis complex 
from the neighbouring drainage—the Omo-Turkana system. Garra 
vinciguerrae from the Blue Nile (which was recorded in Ethiopia for 

the first time in this study) is the sister lineage of both the White Nile 
and Omo-Turkana lineages. The most divergent lineages, G.  mak-
iensis and G. tibanica, are from the Ethiopian Rift Valley and Indian 
Ocean basins, respectively (Figure 5).

Compared to mitochondrial data, the nuclear phylogenomic 
tree shows much better segregation of Garra ecomorphs from 

F I G U R E  4  (a) Consensus tree of relationships among Ethiopian Garra from all main drainages based on cytb sequences. Bayesian posterior 
probabilities (before slash) from BI analysis and bootstrap values from ML analysis (after slash) above 0.5/50 are shown; asterisks represent 
posterior probabilities/bootstrap values of 1/100. Red vertical bars indicate Ethiopian Garra while black bars indicate African Garra from 
other regions; black circles indicate Asian Garra. Sore River Garra are named by haplotype numbers. Scale bar and branch lengths provide the 
expected substitutions per site. The green and yellow colours highlight two branches of Garra in the Sore River. (b) Median-joining haplotype 
network of Garra from the Sore River, based on 107 cytb sequences (989 bp in length). The “green” haplogroup includes ecomorphs 1–5, 
while the “yellow” haplogroup includes ecomorphs 2–6. Black dots represent hypothetical intermediate haplotypes [Colour figure can be 
viewed at wileyonlinelibrary.com]

(b) (a)

F I G U R E  5  (a) ML phylogenetic tree 
of Ethiopian Garra based on RAD-loci 
sequences: 23,365 loci; 3,075,180 bp, 
and (b) SVDQ species tree. Each locus 
was treated as a separate partition with 
the GTR+G substitution model and 
heterozygous sites within each individual 
encoded using IUPAC notation. Black dots 
designate 100% bootstrap support, and 
only values above 50% are given. Sore 
River Garra individuals are labelled by 
their voucher numbers listed in BioProject 
ID PRJNA749254 (https://www.ncbi.nlm.
nih.gov/) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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the Sore River (Figure 5a). The “narrow-mouth,” “wide-mouth” 
and “thick-lipped” ecomorphs form monophyletic clusters, while 
other ecomorphs are divided into two (“generalized” and “pred-
ator”) or even three (“stream-lined”) clusters. We assign two 
distantly located branches of the “generalized” ecomorph as 
1a/1b, and “stream-lined” ecomorph as 2a/2b according to pop-
ulation genomics analyses described below (Figures 6–8). The 
“generalized” and “stream-lined” ecomorphs on the one hand, 
and other ecomorphs on the other form two clusters within the 
Sore River adaptive radiation according to the SVDQ species 
tree (Figure 5b). The “narrow-mouth,” “wide-mouth” and “thick-
lipped” ecomorphs are the most recently diverged branches 
according to the SVDQ-tree, but the nodes are only weakly sup-
ported (Figure 5b).

Relationships among the Sore River sympatric ecomorphs based 
on analysis of all samples and full RAD-loci sequences (>7,000 loci 
and >0.96  Mbp length sequences) are presented in Figure 6. ML 
analysis gives high support to the monophyly of each ecomorph ex-
cept for the “stream-lined” ecomorph. The lineage of the “stream-
lined” ecomorph is paraphyletic, possibly suggesting that there is 
another seventh cryptic species that we could not distinguish phe-
notypically. Four individuals of the “stream-lined” ecomorph along 
with one individual of intermediate phenotype represent another 
lineage that we call 2b (Figure 6). Lineage 2a is sister to all other 
ecomorphs that are divided into two subclades—one includes only 
“generalized” ecomorph individuals (which, in turn is subdivided into 
what we call 1a–1b), while another includes all other ecomorphs: 
“narrow-mouth,” “wide-mouth,” “predator,” “thick-lipped” and above 

F I G U R E  6  ML phylogeny of sympatric 
Garra ecomorphs from the Sore River 
based on concatenated RAD-loci 
sequences (7,370 loci; 969,450 bp). 
Each locus was treated as a separate 
partition with the GTR+G substitution 
model. Heterozygous sites within each 
individual encoded using IUPAC notation. 
The individual samples are coloured 
based on the colour scheme of Figure 
4 and intermediate (putative hybrids) 
phenotypes are depicted in another 
colour. The genetic cluster proportions 
inferred by rmaverick analysis are shown to 
the right of sample numbers. Black points 
designate 100% bootstrap support. Sore 
River Garra individuals are labelled by 
their voucher numbers listed in BioProject 
ID PRJNA749254 (https://www.ncbi.nlm.
nih.gov/) [Colour figure can be viewed at 
wileyonlinelibrary.com] 0.006
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mentioned “stream-lined” 2b. The latter subclade is composed of 
lineages, each containing samples of particular ecomorphs except 
for several samples which were intermediate in their phenotypes 
(Figure 6). The “thick-lipped” ecomorph was found to be sister to the 
2b lineage albeit with an apparent rather deep last common ances-
tor. Generally, the placement of clade 2a as sister to all other Garra 
from the Sore River, which is characterized by a well-developed 
gular disc (type C), might suggest that this morphology is an ances-
tral condition of this radiation.

3.4.2  |  Population genomics

PCAs of the 679 nuclear SNPs of sympatric ecomorphs revealed 
several well-defined clusters that mirror their phenotypic differen-
tiation (Figure S6). The “generalized” ecomorph (composed of two 
genetic subclusters 1a and 1b), genetic cluster 2a of the “stream-
lined” ecomorph as well as the “narrow-mouth” and “wide-mouth” 
ecomorphs form well-distinguished groups, while cluster 2b of the 
“stream-lined” and “predator” ecomorphs broadly overlap. Two 

F I G U R E  7  Hierarchical rmaverick results for sympatric ecomorphs of Garra from the Sore River, based on 679 nuclear SNPs. Each 
column of the barplot shows individual assignments to one of the inferred genetic clusters. Independent runs of rmaverick are indicated by 
a solid black line above a plot, along with an inferred value of K. Sore River Garra individuals are labelled by their voucher numbers listed in 
BioProject ID PRJNA749254 (https://www.ncbi.nlm.nih.gov/) [Colour figure can be viewed at wileyonlinelibrary.com]
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individuals of the “thick-lipped” ecomorph were placed between 
the cluster of the “narrow-mouth” ecomorph and cluster 2a of the 
“stream-lined” ecomorph.

Analysis of population structure carried out with admixture re-
vealed an optimum of three (K) genomic clusters that correspond 
to the (i) “generalized” + “stream-lined” (2a lineage) ecomorphs, (ii) 
“narrow-mouth” + “wide-mouth” ecomorphs, and (iii) “predator” + 
“stream-lined” (2b lineage) ecomorphs (Figure 7, upper row, K = 3). 
The “thick-lipped” ecomorph is characterized by an admixture of two 
clusters from the “narrow-mouth” and “stream-lined” (2b lineage) 
ecomorphs.

Subsequent analysis of each cluster (=  lineage) revealed hier-
archical subdivision. Thus the “generalized” and “stream-lined” (2a 
lineage) ecomorphs each are also identified as distinct clusters in 
the admixture analysis (Figure 7, middle row, K = 2). Although the 
“narrow-mouth,” “wide-mouth,” “predator” and “stream-lined” (lin-
eage 2b) ecomorphs are supported as independent evolutionary 
units based on several types of genetic analyses, few individuals in 
all of these show signs of historical gene flow based on admixture 
analysis (Figure 7). The two individuals from the “thick-lipped” eco-
morph showed a high level of admixture with the “narrow-mouth” 
(36.8%–47.5%) and “stream-lined” (lineage 2b) (51.3%–62.3%) 
ecomorphs, possibly supporting a hybrid origin hypothesis. One 
additional level of population subdivision was detected in the “gen-
eralized” ecomorph (Figure 7) with two genomic clusters (lineages 
1a and 1b) with a high degree of admixture. This suggests heteroge-
neous genomic structure of the “generalized” ecomorph as a result 
of secondary contact.

All Reich FST pairwise comparisons were statistically significant 
with values ranging from 0.10 (“generalized” ecomorph: lineages 1a 
vs. 1b) to 0.46 (“thick-lipped” ecomorph vs. lineage 2b of “stream-
lined” ecomorph) (Figure 8). Although the “thick-lipped” ecomorph 
had the highest FST values (0.39–0.46), it should be treated cau-
tiously because of low sample size.

As the rmaverick analysis suggested a notable level of admixture 
between lineage 2b of the “stream-lined” ecomorph and “narrow-
mouth,” “wide-mouth” and “thick-lipped” ecomorphs (Figure 8), which 
form a single monophyletic cluster in our phylogenomic analysis 

(Figure 7), we performed a number of tests to distinguish between 
gene flow (introgression) and ILS. Patterson's D statistic was positive 
and significant for a number of comparisons (Table 3). Visualization 
of the f-branch metric (which is based on f4-ratio results) highlighted 
introgression between the “stream-lined” (lineage 2b) and “narrow-
mouth” ecomorphs, “thick-lipped” and “narrow-mouth” ecomorphs, 
and “predator” and “narrow-mouth” ecomorphs (Figure 8).

The eighth genetic clusters possess from three (“thick-lipped” 
ecomorph) to 38 private alleles (“wide-mouth” ecomorph) (Table 4). 
The “thick-lipped” ecomorph has also the lowest heterozygosity 
(HO = 0.00058) as well as nucleotide diversity (π = 0.00054) com-
pared to all other ecomorphs (HO =0.00104–0.00128; π = 0.00121–
0.00091) (Table 4).

4  |  DISCUSSION

Our study provides genetic support for the hypothesis of the evolu-
tion of a (potentially adaptive) radiation in a riverine environment. 
By analysing trophic features and sucking disc variation, as well as 
trophic ecology, we show morpho-ecological diversification of the 
cyprinid fish Garra dembeensis into six distinct ecomorphs. First, di-
versification of two novel phenotypes (“thick-lipped” and “predator”) 
in the Sore River has evolved rapidly, an event that can be classified 
as a burst of speciation sensu Givnish (2015). Second, this radiation 
resulted in the origin of several highly specialized lineages of algae 
scrapers; that is, a specialized ancestor adaptively radiated giving 
rise to ecomorphologically diverse (and adapted to their particular 
niches) lineages that seem to be not only ecologically but also repro-
ductively isolated from each other.

4.1  |  Ecomorphological diversification

The genus Garra currently comprises more than 160 species (Fricke 
et al., 2021; Yang et al., 2012), only 23 of which occur in Africa 
(Moritz et al., 2019). So far, only 13 described species have been 
reported from Ethiopia (Golubtsov et al., 2002; Stiassny & Getahun, 

P1 P2 P3
D 
statistic Z-score p-value f4-ratio BBAA ABBA BABA

4 3 6 0.1176 5.3829 <.0001 0.1128 227.5 235.0 185.5

2b 3 5 0.0650 3.1078 .0009 0.4226 253.5 246.5 216.4

2b 6 3 0.0646 2.3475 .0095 0.2854 215.6 217.3 190.9

4 3 2b 0.0624 3.8143 <.0001 0.1237 264.6 241.4 213.0

4 3 5 0.0492 3.6742 .0001 0.3277 276.2 247.4 224.2

2b 6 5 0.0327 1.4755 .0700 0.2051 248.6 203.4 190.5

4 6 5 0.0304 1.5315 .0628 0.2330 224.5 226.5 213.2

6 3 5 0.0199 0.9380 .1741 0.1641 244.2 204.7 196.8

2b 4 5 0.0178 1.0774 .1406 0.1134 245.9 246.3 237.7

2b 6 4 0.0040 0.1592 .4368 0.0151 244.6 197.8 196.3

TA B L E  3  Results of Patterson's D 
statistic (ABBA-BABA test) and f4-ratio 
test on selected genetic clusters of Garra 
from the Sore River
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2007). In this study, we discovered six additional distinct ecomorphs 
in the Sore River, and thus might warrant the description of five to 
six new species.

The ecomorphs of the Sore's Garra are exceptionally diverse 
in trophic and sucking disc morphology. Two novel phenotypes 
that had not been discovered before for this genus, “thick-lipped” 
and “predator,”have superficial similarities to Lake Tana large barbs 
species/morphotypes, such as thick-lipped barb L. negdia (Rüppell, 
1836) and predatory L.  gorguari (Rüppell, 1836) (Nagelkerke & 
Sibbing, 1997). The high degree of variation in the sucking disc 
in Sore's Garra can be observed—from a well-developed disc with 
free posterior margin to complete absence. Such a degree of mor-
phological diversity in a single river of the Ethiopian Highlands is 
remarkable.

Divergent feeding-related morphology and gut content analysis 
suggest trophic specialization of Garra sympatric forms. This is con-
sistent with other cases of apparent adaptive diversification among 
Ethiopian cyprinids, where trophic resource partitioning promoted 
diversification: Labeobarbus spp. in Lake Tana (Sibbing et al., 1998) 
as well as in the Genale River (Levin et al., 2019). The most com-
mon foraging strategy among Garra is scraping of periphyton from 
stones and rocks (Hamidan et al., 2016; Matthes, 1963). This is pre-
dominant in the “generalized” and “stream-lined” ecomorphs that 
have a long gut (four to five times longer than body length) filled 
with periphyton and detritus. The “generalized” and “stream-lined” 
ecomorphs are divergent mainly in body shape. The latter has a 
streamlined appearance and is probably adapted for life in more 
rapid flowing water. The “narrow-mouth” ecomorph has a shorter 
gut length (about two times longer than body length) and a mixed 
diet with significant additions of benthic invertebrates. The “preda-
tor” ecomorph has an extremely short gut, whose length is as long 
as the fish body. A short gut is a strong marker for a predatory/
piscivory feeding strategy in fishes, including cyprinids (Nagelkerke, 
1997; Sibbing et al., 1998; Wagner et al., 2009, Zandoná, Auer, 
Kilham, & Reznick, 2015). Predatory Garra from the Sore River have 
four to five times shorter gut length than congeneric periphyton 
feeders and a two-fold shorter gut than that of piscivory the large-
mouthed ecomorph of Labeobarbus from the Genale River, Ethiopia 
(Levin et al., 2019). We found empty guts in many individuals of 
the “predator” ecomorph, while small fishes had gut filled with 
insects. The “wide-mouth” ecomorph has a rather long intestine 
and predominantly periphyton in its diet, but it is characterized 
by a distinctly divergent mouth phenotype compared to the “gen-
eralized” and “stream-lined” ecomorphs (Figure 3). The gut of the 
“thick-lipped” ecomorph was not analysed because of the extreme 
rarity of samples. Hypertrophied lips (or “rubber lips”) of fishes is an 
adaptation to foraging on benthos hidden between rock crevices 
on pebble and rock fragments via increased sucking power by seal-
ing cracks and grooves (Baumgarten et al., 2015; Matthes, 1963; 
Ribbink et al., 1983). The thick-lipped phenotype is widely distrib-
uted among other cyprinid fish, Labeobarbus spp., inhabiting lakes 
and rivers of the Ethiopian Highlands (Mina et al., 1996; Mironovsky 
et al., 2019; Nagelkerke et al., 1994) including the Sore River (Levin TA
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et al., 2020), but it was not detected among Garra species. Our 
study shows that the thick-lipped mouth phenotype represents an 
evolutionary novelty within the Garra lineage that probably resulted 
from hybridization events between the “stream-lined” (lineage 2b) 
and “narrow-mouth” ecomorphs because its genome had an admix-
ture from these genetic lineages. The hybrid origin of the Garra's 
thick-lipped phenotype is in line with results of a recent experimen-
tal study demonstrating the importance of hybridization in generat-
ing functional novelty of ecological relevance in relation to trophic 
resources unavailable for parental species in cichlid fishes (Selz & 
Seehausen, 2019). At the same time, the origin of the novel thick-
lipped phenotype in the genus Garra is of particular interest in light 
of knowledge of the nonhybrid origin of hypertrophied lips from an-
cestors with normally developed lips in cichlids (Baumgarten et al., 
2015; Machado-Schiaffino et al., 2017). Interestingly, there might 
only be a single locus involved in producing the hypertrophied cich-
lid phenotype (Kautt et al., 2020), and the genomic basis of the lip 
phenotypes in Garra remains unknown.

Another novel phenotype for Garra detected in the Sore River is 
the “predatory” niche. A conspicuously piscivory trophic strategy is 
rare among Cypriniformes, presumably because they have a tooth-
less jaw. Nevertheless, this feeding strategy is quite common among 
cyprinid fishes inhabiting water bodies of the Ethiopian Highlands. 
For example, seven of the total 15 endemic Labeobarbus spp. found 
in Lake Tana are predatory on fish (Nagelkerke et al., 1994; Sibbing 
et al., 1998); predation evolved multiple times among riverine popu-
lations of the genus Labeobarbus (Levin et al., 2020).

To our knowledge, only one sympatric diversification has pre-
viously suggested for Garra—the intralacustrine complex including 
three species inhabiting Lake Tana in Ethiopia (Geremew, 2007; 
Stiassny & Getahun, 2007). This diversification resulted in divergent 
phenotypes (gular discs vary from well-developed to reduced in size) 
and ecology (one form is pelagic: G. tana) and can be considered as 
a recent speciation as suggested by the absence of mtDNA diver-
gence among these species (Tang et al., 2009). Unfortunately, little 
is known about the morphoecological and genetic diversity of this 
Lake Tana radiation. Sympatric divergence was also recently pro-
posed as the most likely mechanism for the origin of two blind Garra 
species, G. typhlops and G. lorestanensis, inhabiting the same cave in 
the Zagros Mountains, Iran (Segherloo et al., 2018).

4.2  |  Possible scenarios of evolution of Garra's 
adaptive radiation in the Sore River

Both mtDNA and genome-wide SNP data support the monophyly 
of the Sore's Garra as well as their recent speciation based on low 
genetic divergence between the nearest ancestor and Sore River 
ecomorphs and low SNP numbers. The closest relative and ancestor 
of the Sore River diversification inhabits the same subbasin of the 
White Nile in Ethiopia, therefore suggesting an intrabasin diversi-
fication of Garra there. On the one hand, mtDNA data might have 
failed to distinguish sympatric ecomorphs because of a high level of 

shared genetic diversity caused by ILS and introgression, this latter 
highlighted by the D-statistic calculated with the genome-wide nu-
clear data. On the other hand, the SNP data support a reproductive 
isolation among closely related ecomorphs despite few individuals 
having intermediate phenotypes and genetic admixture. A hybrid 
origin of intermediate phenotypes might suggest that reproductive 
isolation barriers are not yet complete.

Patterns of haplotype net (numerous haplotypes occurring in 
the same phenotypes) as well as SNP data (presence of more ge-
netic clusters than phenotypes, such as within the “generalized” 
and “stream-lined ecomorps”) could also suggest secondary contact 
of local subisolated populations. The riverine net of the Ethiopian 
Highlands was significantly influenced by several episodes of dra-
matic volcanism and tectonism until the Quaternary (Ferguson et al., 
2010; Hutchison et al., 2016; Prave et al., 2016). Thus, riverine net 
fragmentation, isolation or subisolation of some riverine parts, and 
captures of headwaters is a likely scenario given the geological his-
tory of the Ethiopian Highlands (Mège et al., 2015), as also supported 
by genetic studies on other Ethiopian fishes (Levin et al., 2019, 
2020). Concerning the Sore River, while waterfalls and rapids are 
frequent, no geological data that support its connection or headwa-
ter capture to other basins are known. In our view, the most reliable 
evolutionary scenario for the origin of the riverine adaptive radiation 
in the Garra species group draws upon a combination of allopatric 
and sympatric stages of speciation with hybridization and admixture. 
A comparable evolutionary history was detected in the Labeobarbus 
adaptive radiation in the Genale River (Ethiopia), which is part of the 
extended ancient riverine net in the Juba–Wabe–Shebelle drainage 
(Levin et al., 2019).

Speciation with gene flow was detected in several studies (e.g., 
Feder et al., 2012; Fruciano et al., 2016; Kautt et al., 2018; Kautt 
et al., 2020; Machado-Schiaffino et al., 2017; Malinsky et al., 2018; 
Puebla, 2009; Rougeux et al., 2017; Schwarzer et al., 2011; Smadja 
& Butlin, 2011; Zheng & Ge, 2010). Notably, it has been shown that 
genetic admixture between divergent populations/lineages may be 
a key factor in promoting rapid ecological speciation (Jacobs et al., 
2020; Kautt et al., 2020; Marques et al., 2019; Martin et al., 2015). 
Moreover, ancient hybridization is widely considered one of the 
most important factors driving the spectacular cichlid adaptive ra-
diations in the African Great Lakes (Irisarri et al., 2018; Meier et al., 
2017; Verheyen et al., 2003). Seemingly, ancient introgressive hy-
bridization could be a trigger for small-scale repeated adaptive ra-
diations among the Arctic charrs (Salvelinus) (Lecaudey et al., 2018). 
Furthermore, hybridization is the main mechanism generating 
polyploid lineages in fishes (tetraploid, hexaploidy, etc.; Braasch & 
Postlethwait, 2012), whose complex genomes constitute the raw 
material for the rapid origin of sympatric forms (e.g., Schizothorax 
and Schizopygopsis in Central Asia: Berg, 1914; Burnashev, 1952; 
Terashima, 1984; Savvaitova et al., 1988; Komarova et al., 2021; 
Labeobarbus in Africa: Levin et al., 2020; Mina et al., 1996; Nagelkerke 
et al., 1994; Vreven et al., 2016). Nevertheless, all described Garra, 
including the Ethiopian species, have diploid genomes (Krysanov & 
Golubtsov, 1993).
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4.3  |  Adaptive radiation in riverine environment

Most adaptive radiations of freshwater fishes have been reported 
from the lacustrine environments (e.g., Fryer & Iles, 1972; Seehausen 
& Wagner, 2014; Verheyen et al., 2003). However, increasing evi-
dence suggests that adaptive radiation can take place in other aquatic 
environments (e.g., marine, riverine) (Burress et al., 2018; Dimmick 
et al., 2001; Feulner et al., 2008; Levin et al., 2019, 2020; Melnik 
et al., 2020; Matschiner et al., 2011; Piálek et al., 2012; Puebla, 
2009; Whiteley, 2007). Several other cases of potential riverine 
adaptive radiations that include three or more sympatric ecomorphs 
exist, although they have not yet been tested with genetic methods: 
for instance, snow trout from Central Asia (Berg, 1914; Burnashev, 
1952), and Poropuntius and Neolissochilus barbs from Southeast Asia 
(Roberts, 1998; Roberts & Khaironizam, 2008). Among cichlids, one 
of the first riverine adaptive radiations examined genetically was 
from southern Africa (Joyce et al., 2005). However, the authors of 
that study suggested that the adaptive radiation occurred in the 
lacustrine environment in the palaeo-lake Makgadikgadi that dried 
up during the Holocene (Joyce et al., 2005). Other cichlid adaptive 
radiations from the rivers of West Africa (Schwarzer et al., 2011), 
South America (Burress et al., 2018; Piálek et al., 2012) as well as 
four independently evolved riverine radiations of labeobarbs from 
East Africa (Levin et al., 2020) instead took place in riverine drain-
ages without known lacustrine conditions in the past.

The Garra lineage is adapted to fast and torrent waters. It pos-
sesses a morphological novelty (gular sucking disc) used to cling on 
the bottom of fast-moving waters. This novelty allowed Garra to be 
distributed widely in highlands and montane zones from Southeast 
China to West Africa. Only a few species were found in the la-
custrine environment (Lake Tana: Stiassny & Getahun, 2007) or in 
caves (e.g., Banister, 1984; Coad, 1996; Kruckenhauser et al., 2011; 
Mousavi-Sabet & Eagderi, 2016), indicating their potential to adapt 
to steady water flows.

Although the riverine network is generally considered more open 
to gene flow compared to landlocked water bodies, mountain and 
highland areas are an exception to this rule. The Ethiopian Highlands 
are a volcanic massif of flood and shield volcano basalts 0.5–3.0 km 
thick that form a spectacular trap topography (1,500–4,500  m) 
flanking the Main Ethiopian Rift (Prave et al., 2016). The geological 
history of the Ethiopian Highlands was tectonically very dynamic 
and rich in volcanic episodes from the Oligocene to Pleistocene 
with very recent episodes (Prave et al., 2016). The volcanic activity 
has been severe enough to deleteriously affect the biota and cause 
major disruptions in ecosystems. This hypothesis has found support 
in the inferred evolutionary history of the genus Labeobarbus in East 
Africa. The earliest fossil records of Labeobarbus were found in the 
Ethiopian Rift Valley and dated back to the late Miocene (Stewart 
& Murray, 2017), but most of the Ethiopian lineages are younger 
(Pleistocene origin) (Beshera et al., 2016; de Graaf et al., 2010; Levin 
et al., 2020). The tectonic activity of the region could have favoured 
local isolation via the formation of waterfalls (e.g., 33,000 years ago 
the Blue Nile basaltic blockade formed Tis-Isat waterfall; Prave et al., 

2016) or river net fragmentation (Juba-Wabe-Shebelle drainage; 
Mège et al., 2015) along with climatic oscillations that resulted in 
disconnection of water bodies during aridization (Benvenuti et al., 
2002). Periodically, it resulted in vacant habitats and ecological op-
portunity (reviewed by Stroud & Losos 2018) for new species to ex-
ploit, similar to islands or crater lakes (Burress et al., 2018).

The diversification burst in Garra in the Sore River was detected 
in the riverine segment at an altitude range of 1,310–1,550  m 
asl, that is within the range of four riverine diversifications of 
Labeobarbus detected throughout the Ethiopian Highlands: 1,050–
1,550 m (Levin et al., 2020). Despite the generally broader elevation 
gradient (175–2,000  m asl; Levin et al., 2020) of the Labeobarbus 
species complex, the diversification bursts were only detected in 
mid- to upper reaches. We believe that a combination of two factors 
might explain this observation: (i) fauna in mid- to upper reaches is 
poorer compared to lower reaches, where a more diversified fauna 
might have already filled the available ecological niches necessary 
for an adaptive radiation to unfold; and (ii) the biotopes are more 
diverse compared to the most upper reach, such that vacant niches 
are available.

Five endemic, and one introduced non-Garra species have been 
recorded in the Sore River in the study area (data of this study). This 
is an extremely low number compared to more than 110 fish species 
(Golubtsov & Darkov, 2008; our data) recorded in the Baro River at 
Gambella at 440 m altitude (our data) to which the drainage of the 
Sore River belongs, with a distance of ~150 km between localities. 
The segment of the Sore River where the diversification of Garra was 
detected is rather rich in biotope complexity: pools with slow cur-
rents alternate with rift areas and rapids (Figure S7). The depauper-
ated fauna was suggested to provide the ecological opportunities for 
riverine adaptive radiations similar to that in southeastern cyprinids 
of the genus Poropuntius (Roberts, 1998) and South America cichlids 
of Crenicichla as relaxed competition and vacant niches might have 
provided ecological opportunities for sympatric speciation by tro-
phic specializations (Burress et al., 2018).

We discovered six genetically distinct ecomorphs within the 
genus Garra in the Sore River that can be considered young or incipi-
ent species. Given that the same riverine segment is home to another 
riverine diversification of fishes represented by four phenotypically 
diverged ecomorphs of the genus Labeobarbus (Levin et al., 2020), 
we consider the Sore River to be a hotspot of riverine diversification 
in the Ethiopian Highlands that requires conservation management. 
The Ethiopian Highlands are home to several young fish radiations—a 
large lacustrine diversification among cyprinids (15 species/morpho-
types: Mina et al., 1996; Nagelkerke et al., 1994, 2015) as well as 
small diversifications of Garra (three species: Stiassny & Getahun, 
2007) and Enteromius (two species: Dejen et al., 2002; de Graaf et al., 
2007)—all in Lake Tana, and five riverine adaptive radiations of cy-
prinids each including from four to seven species (Golubtsov, 2010; 
Golubtsov et al., 2021; Levin et al., 2019, 2020; Mina et al., 1998; 
current study), highlighting this region's importance as a hotspot for 
fish speciation that is in need of additional research on ecological 
speciation processes.
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