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Explaining why some lineages diversify while others do not and how are key objectives in evolutionary biology. Young radiations

of closely related species derived from the same source population provide an excellent opportunity to disentangle the relative

contributions of possible drivers of diversification. In these settings, lineage-specific effects are shared and can be ruled out.

Moreover, the relevant demographic and ecological parameters can be estimated accurately. Midas cichlid fish in Nicaragua have

repeatedly colonized several crater lakes, diverged from the same source populations, and, interestingly, diversified in some of

them but not others. Here, using the most comprehensive molecular and geometric morphometric data set on Midas cichlids to

date (�20,000 SNPs, 12 landmarks, �700 individuals), we aim to understand why and how crater lake populations diverge and

why some of them are more prone to diversify in sympatry than others. Taking ancestor-descendant relationships into account,

we find that Midas cichlids diverged in parallel from their source population mostly—but not exclusively—by evolving more

slender body shapes in all six investigated crater lakes. Admixture among crater lakes has possibly facilitated this process in one

case, but overall, admixture and secondary waves of colonization cannot predict morphological divergence and intralacustrine

diversification. Instead, morphological divergence is larger the more dissimilar a crater lake is compared to the source lake and

happens rapidly after colonization followed by a slow-down with time. Our data also provide some evidence that founder effects

may positively contribute to divergence. The depth of a crater lake is positively associated with variation in body shapes (and

number of species), presumably by providing more ecological opportunities. In conclusion, we find that parallel morphological

divergence in allopatry and the propensity for diversification in sympatry across the entire Midas cichlid fish radiation is partly

predictable and mostly driven by ecology.

KEY WORDS: Admixture, colonization history, demographic inference, ecological opportunity, evolutionary rate, founder effect,

geometric morphometrics, parallel evolution, phenotypic trajectory, RADseq.

Impact summary
The variation in diversification rates and associated species

richness among organisms is stunning and apparent at differ-

ent taxonomic levels. For example, almost half of the more

than 60,000 described extant species of vertebrates are teleost

fishes and of those about 2500, in turn, belong to the family
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of cichlid fishes (Cichlidae). In other words, approximately

every 25th vertebrate species is a cichlid fish. Moreover, at

an even lower taxonomic scale, it is the Haplochromines that

account for the majority of cichlid species diversity in Africa,

whereas other cichlid “tribes” are arguably species-poor in

comparison. In this study, we aim to identify factors that ex-

plain when and how diversification takes place. We make use

of a study system at the lowest level of taxonomic scale. Mi-

das cichlids in Nicaraguan crater lakes form a species complex

of more than 11 closely related lineages that have evolved in

less than 2000 generations. Stemming from the same source

populations, unlike other cichlid lineages in these lakes, all Mi-

das cichlids have morphologically diverged from their source

population and even diversified into multiple species within

at least two crater lakes without geographic barriers. We find

that the ecological environment of a crater lake predicts how

different crater lake populations will be from their source pop-

ulation. Furthermore, diversification within crater lakes can

probably only occur if enough “ecological opportunity” in the

form of water depth and habitat diversity exists. Thus, overall,

our study shows that ecology plays a major role in shaping

the diversity of an entire species complex—both among and

within lakes—in a largely predictable manner.

Understanding why some lineages tend to diversify prolifi-

cally while others do not is a key objective in evolutionary biology

(Seehausen and Wagner 2014; Grant and Grant 2017). Among the

most important factors thought to positively influence diversifi-

cation rates is ecological opportunity (Schluter 2000; Losos and

Ricklefs 2009; Yoder et al. 2010), which can come about either

by the evolution of key innovations, the colonization of habitats

with underutilized niches, the extinction of previously dominat-

ing lineages, or the appearance of new resources (Stroud and

Losos 2016). While key innovations (e.g., modification of the

pharyngeal jaws in cichlid fishes (Liem 1973)) can be potentially

invoked to explain the diversity of a clade in general, they cannot

by themselves explain pronounced differences in diversification

rates between closely related lineages that also share that partic-

ular key innovation. Similarly, the colonization of a new habitat,

even if it happened repeatedly within a single lineage, does not al-

ways result in divergence and incipient adaptive radiation (Martin

2016). In other words, factors other than ecological opportunity

are likely to often influence the onset of any particular adaptive

radiation (Stroud and Losos 2016). Historical contingencies, for

one, presumably play a large role in most radiations (Gavrilets

and Losos 2009). For example, the relative timing of coloniza-

tion events can determine the fate of radiations (i.e., priority ef-

fects): a resident species can potentially prevent the colonization

of an ecologically equivalent species or suppress its subsequent

diversification (Chase 2007; Tan et al. 2017). Moreover, various

demographic factors even within a single colonizing lineage can

have diverse effects. In the context of the colonization of a new

habitat, the size and growth rate of the founder population will

determine the strength of the founder effect, which can, in turn,

affect morphological divergence (Mayr 1954; Kolbe et al. 2012).

In addition, bouts of secondary colonization and hybridization

can facilitate diversification processes by seeding a population

with genetic variation (e.g., increasing variation in adaptive traits

or mate preferences and incompatibilities) that evolved in a phase

of allopatric isolation (Seehausen 2004; Martin et al. 2015; Meier

et al. 2017; Richards and Martin 2017).

The increasing complexity of historical processes over large

time scales can render disentangling the contributions of vari-

ous extrinsic and intrinsic factors difficult. In young (or ongoing)

adaptive radiations, on the other hand, the ecological conditions

driving diversification have presumably often not changed and the

demographic histories of populations can still be reconstructed in

detail (e.g., Kavembe et al. 2016). Thus, studies of young radia-

tions allow for insights into the immediate factors that drive di-

versification and can complement large-scale macroevolutionary

studies in important ways (de la Harpe et al. 2017; Recknagel et al.

2017). In particular, study systems with natural replicates (e.g.,

repeated colonization of islands or lakes) may allow to reveal fac-

tors that are positively or negatively associated with diversification

rates or a proxy thereof (Losos and Ricklefs 2009; Seehausen and

Wagner 2014; Martin 2016). In this regard, diversification rates

themselves are often hard to quantify in young systems in which

population divergence may be at the earliest stage of the specia-

tion process. A simple determination of the number of species in

still radiating systems will likely be subject to taxonomical ambi-

guities. Morphological variation, on the other hand, has proven to

be a useful, quantifiable measure of adaptive diversity (Roy and

Foote 1997; Mahler et al. 2010) with species in most adaptive

radiations showing differences in morphology (Schluter 2000). In

fish, body shape constitutes an adaptive trait. Lacustrine fish often

exhibit elongated body shapes in the open-water zone (limnetic

environment) and are usually more deep-bodied in the benthic en-

vironment (Webb 1984; Meyer 1990; Schluter 1993; Langerhans

and Reznick 2010; Kautt et al. 2016b).

Midas cichlid fish (Amphilophus spp. species complex) in

Nicaragua have repeatedly colonized small and remote crater

lakes and subsequently diverged from the same source popula-

tions and diversified phenotypically in situ in some of them but

less so in others (Elmer et al. 2010a; Kautt et al. 2016a). Ac-

cordingly, divergence and diversification in Midas cichlids has

happened in complete geographic isolation as well as in full sym-

patry. The two great lakes, Nicaragua and Managua, are intermit-

tently connected by Rio Tipitapa, which flows from L. Managua

into L. Nicaragua through Tisma Pond (Fig. 1). Both great lakes
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Figure 1. Geographic distribution and morphological diversity of focal populations of Midas cichlid fish. The two great lakes Nicaragua

and Managua are intermittently connected by Rio Tipitapa that flows through Tisma Pond. Las Canoas is not a crater lake, but a water

reservoir, which had historically been connected to L. Nicaragua by Rio Malacatoya until the construction of a dam. All crater lakes

are isolated bodies of water with no inlet or outlet. Superimposed on the map are representative specimens of species and ecotypes

inhabiting the lakes.

harbor the same set of Midas cichlid species, A. citrinellus and

A. labiatus. The former is considered the archetype of the species

complex, whereas the latter is characterized by its markedly pro-

nounced hypertrophied lips and a more pointed and narrow head

shape (Barlow and Munsey 1976). The two species in the great

lakes are not equally abundant, with A. labiatus being much rarer;

its relative frequency compared to A. citrinellus fluctuates from

as little as one percent to only around 15 percent.

At least seven crater lakes are known to harbor Midas cich-

lids, but so far most studies (including this one) have focused on

the largest six crater lakes (Barluenga and Meyer 2010; Elmer

et al. 2010a; Geiger et al. 2010a), since the remaining tiny Crater

Lake Tiscapa is located within the city of Managua and has been

highly polluted by anthropogenic activity. Of the six main crater

lakes, all have been colonized from L. Managua, except for L.

Apoyo that has been colonized from L. Nicaragua (Barluenga

and Meyer 2010; Machado-Schiaffino et al. 2017). No water con-

nections are known to exist between crater lakes. Crater lakes are

remarkably deep (mean depth between 17.2 and 142 meters) and

are characterized by a large open-water zone (Waid et al. 1999).

They provide thus a generally very different environment from the

extremely shallow, but old, source lakes Managua and Nicaragua

(mean depth of 8.6 and 12.4 meters) (Elmer et al. 2010a). Apart

from the great lakes and crater lakes, Midas cichlids occur in rivers

across Nicaragua and a population of Midas cichlids exists in the

water reservoir Las Canoas, which was historically connected to

L. Nicaragua via Rio Malacatoya until the construction of a dam.

All crater lake populations are morphologically distinct from

the source populations (Elmer et al. 2010a), but in only two of

the crater lakes, Apoyo and Xiloá, have multiple endemic species

of Midas cichlids been described (so far). In L. Apoyo, the six

species—described based on morphology—(Barlow and Munsey

1976; Stauffer et al. 2008; Geiger et al. 2010b) are, however, not in

concordance with population genetic data that provide evidence

for only five genetic clusters (Kautt et al. 2016a). In L. Xiloá, the

four described species (Stauffer and McKaye 2002; Recknagel

et al. 2013b) are in concordance with four distinct genetic clus-

ters, although hybridization between two of them seems to be still

ongoing to a considerable extent (Kautt et al. 2016a). Notably, in

both of these lakes a species with an elongated body shape adapted

to the open water niche (referred to as “limnetic”) has evolved in

parallel (Elmer et al. 2014). Crater lakes Apoyeque and Masaya

harbor each a morphologically polymorphic population in which

a certain proportion of fish (5–20%) exhibit hypertrophied lips

(Elmer et al. 2010b; Machado-Schiaffino et al. 2017), phenotyp-

ically resembling A. labiatus from the great lakes. Two of the

smallest crater lakes, Asososca Managua and Asososca León, are

inhabited by populations with a rather continuous distribution of
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phenotypes, albeit in the former lake fish may be at the earliest

stages of divergence along the benthic-limnetic axis (Kautt et al.

2016b), similarly to fish in crater lakes Apoyo and Xiloá.

Accordingly, crater lake Midas cichlids represent an inter-

esting natural experiment with populations at different stages of

divergence and intralacustrine diversification. This allows to ask:

what is driving morphological divergence and speciation after col-

onization, if it is happening in a deterministic fashion, and why

did intralacustrine phenotypic diversification take place only in

some crater lakes and not in others. Yet, this can only be tested

critically with a large samples size of all populations (Geiger et al.

2010a) and a good understanding of their evolutionary relation-

ships and demographic histories (Simoes et al. 2016). In a previ-

ous study, we found a positive correlation between the mean depth

of a crater lake and variation in body elongation, and that lakes

with a larger littoral zone harbor on average more deep-bodied

individuals (Recknagel et al. 2014). However, without reliable

estimates of the colonization history, the effects of demographic

correlates on morphological evolution, and its speed, could not

be tested. Furthermore, univariate measures of morphology can-

not capture differences in the direction of divergence. Multivariate

analyses are needed to determine how parallel divergence has hap-

pened, which is an important step in understanding the factors that

drive evolutionary divergence and diversification (Langerhans and

DeWitt 2004; Oke et al. 2017; Stuart et al. 2017).

In this study, we analyzed a comprehensive dataset, both in

terms of genetic markers (�20,000 SNPs) and geometric mor-

phometric data, of almost 700 individuals covering nearly all lake

populations and all described species of Midas cichlids. Com-

plementing a previously in-house generated RADseq dataset with

new data for two more populations, we analyzed all data on Midas

cichlids together in a complete phylogenetic framework of this en-

tire lineage. This allowed us to infer the evolutionary relationships,

test for introgression, and to compare the colonization histories

of virtually all lineages in the entire species complex. Moreover,

we generated geometric morphometric data for virtually all sam-

ples in our RADseq dataset to quantify the amount of body shape

variation within lakes, as well as to determine the direction and

extent of morphological divergence (length and angle of pheno-

typic trajectories) between crater lakes and their respective source

population (i.e., by explicitly taking ancestor-descendant relation-

ships into account). Together with physico-ecological attributes of

the crater lakes (mean depth and size of the littoral zone), we then

tested if the most relevant inferred demographic parameters (time

since colonization, size of the founder population, admixture pro-

portion from a secondary wave of colonization, and long-term

effective population size) can explain morphological divergence

in Midas cichlids and if the rate of morphological change gener-

ally seems to remain constant, increase, or slow-down with time

after the colonization of a crater lake.

Methods
SAMPLING AND DDRAD SEQUENCING

Fish were collected in the field in 2001, 2003, 2005, 2007, 2010,

and 2012 with gill nets or by harpooning. Collections of the great

lakes were augmented with fish purchased from local fishermen

(see Table S1 for sample sizes by population and location). Spec-

imens were photographed in a standardized way from the lateral

view in the field and tissue samples from fins or dorsal muscu-

lature were taken and preserved in pure ethanol. Whole genomic

high-molecular-weight DNA was extracted with commercial kits

(QiaGen DNeasy blood and tissue kit). Sequence data were gener-

ated using a double-digest RAD sequencing approach (Peterson

et al. 2012) with modifications as described previously (Reck-

nagel et al. 2013a; Kautt et al. 2016a). To minimize the potential

effect of PCR errors/duplicates, a low number of only 10 amplifi-

cation cycles, 10 independent PCR reactions per library that were

subsequently pooled, and a high-fidelity polymerase were used

for genomic library preparation. Reads were mapped to a genome

assembly of A. citrinellus from Lake Nicaragua (Elmer et al.

2014) with bwa mem v.0.7.12 (Li and Durbin 2009). Genotypes

were called with Stacks v.1.29 (Catchen et al. 2011; Catchen et al.

2013). On average 72,409 ± 17,189 (SD) RAD-tag loci were ob-

tained per individual with a mean coverage of 13.5 x ± 4.2 (SD).

For details on data analysis and filtering see Kautt et al. (2016a).

POPULATION STRUCTURE, ADMIXTURE AMONG

CRATER LAKES, AND DIFFERENTIATION

Population structure and evolutionary relationships were in-

vestigated with Admixture v.1.23 (Alexander et al. 2009),

principal component analyses (PCA) using Eigensoft v.5.0.2

(Patterson et al. 2006), and individual-based phylogenetic split

networks built with SplitsTree v.4.13.1 (Huson and Bryant 2006).

D-statistics were calculated with qpDstat implemented in Admix-

Tools v4.1 (Patterson et al. 2012) for all quadruplets of the form

(((crater lake population, its source population), any other popula-

tion), outgroup). Five individuals of a closely related Neotropical

cichlids species, Archocentrus centrarchus, were used as outgroup

for these analyses. Genetic differentiation (overall FST) among

populations was calculated with Arlequin v3.5.1.3 (Excoffier and

Lischer 2010) and statistical significance was assessed based on

10,000 permutations. Only loci with genotypes present in at least

six samples (three in the case of the outgroup) per lake population

and sympatric species therein and only a single SNP per RAD-tag

locus was used for all analyses above. No minor allele frequency

filter was applied.

DEMOGRAPHIC INFERENCE

The colonization history of crater Lake As. León was inferred

using fastsimcoal v.2.5.2.3 (Excoffier et al. 2013) using the same
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procedure and set of two-population models as used previously

for L. Apoyo and L. Xiloá (Kautt et al. 2016a), L. Masaya and L.

Apoyeque (Machado-Schiaffino et al. 2017), and L. As. Managua

(Kautt et al. 2016b). We used A. citrinellus from L. Managua as a

source population. Note, that the two species in the source lakes

are genetically almost not differentiated (Table S2) and their site

frequency spectra (SFS) almost identical (Fig. S1). Thus, choosing

one or the other species (or both) as source population is unlikely

to affect any of the analyses based on the SFS performed here.

The source and crater lake populations were projected down to 50

and 30 alleles (25 and 15 individuals), respectively, to account for

missing data (Gutenkunst et al. 2009). Genetic markers residing

in coding regions were conservatively removed to minimize the

potential effect of selection. Nonetheless, we note, that neutrality

of markers is an assumption that is probably violated in certain

cases. Reliably identifying and removing markers under selection

in the bottlenecked crater lake populations is difficult, though,

and could not be performed (Poh et al. 2014). By using genome-

wide markers, the effect of selection on certain markers, should

be diluted, but we note that future inferences of the demographic

history in Midas cichlids would benefit from using joint estimators

of selection and demography once these methods are mature and

generally applicable (Li et al. 2012; Bank et al. 2014). A detailed

description of the methodological approach is provided in Kautt

et al. (2016a). Long-term average effective population sizes were

inferred from models without population size changes.

GEOMETRIC MORPHOMETRICS

Body shape was quantified for virtually all samples included in

the RADseq dataset (Table S1) by digitizing 12 homologous land-

marks in individual photographs taken from the lateral side of the

fish with TPSDIG 2.17 (Rohlf 2001). All landmarks were set by

the same individual observer for this study to avoid interobserver

bias. In order to make the data comparable to previous studies,

the landmarks comprised a subset (landmarks 1, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15) of previously defined and used positions

(Elmer et al. 2010a). Body shape divergence in form of Procrustes

and Mahalanobis distances, and body shape variation were deter-

mined in MorphoJ 1.06d (Klingenberg 2011). Briefly, following

Procrustes superimposition, a multivariate pooled within-group

regression of Procrustes coordinates on centroid size was per-

formed. The regression residuals were then used to determine

distances in order to correct for allometric effects. Pairwise mor-

phological distances were calculated among lakes (i.e., individu-

als grouped by lake of origin). While distances were calculated

based on a single global Procrustes superimposition, the variation

in body shape per lake population was determined as the mean

squared distance of individual landmarks to the centroids in sepa-

rate lake-specific Procrustes superimpositions. The coefficient of

variation of the elongation index (CVei) was calculated from two

inter-landmark distances that correspond to standard length and

body height (Recknagel et al. 2014).

Individual and between-group body shape variation was ex-

plored with principal component analyses (PCAs) and the ge-

omorph v.3.0.5 R package (Adams and Otarola-Castillo 2013),

again based on allometry-corrected shape coordinates following

a generalized Procrustes analysis. Since all crater lakes except

for L. Apoyo were colonized from the same source lake of L.

Managua (Barluenga and Meyer 2010; Machado-Schiaffino et al.

2017), our data is not factorial and traditional phenotypic trajec-

tory analyses (Adams and Collyer 2009) could not be performed.

Instead, to visualize phenotypic trajectories, between-group PCAs

were performed and the corresponding least-squares group means

were connected (i.e. crater lake populations/species with their re-

spective source population). The difference in length “dL” and

angle “theta” of pairwise vectors in multivariate space, an ap-

proach originally pioneered by Adams and Collyer (2009), was

formally quantified following Stuart et al. (2017). Briefly, dL is the

sum of t-statistics comparing the x and y coordinates (Procrustes-

superimposed and allometry-corrected) of all 12 landmarks be-

tween two groups. Theta is the arccosine of the correlation coef-

ficient of the t-statistics. Statistical significance was determined

based on 1000 label-switch permutations (see Stuart et al. 2017

for details). Note that we took the absolute value of observed

and permuted dL, which could otherwise be positive or negative

depending on which population pair is listed first. For practical

reasons (i.e., creating a paired design), data for the source popu-

lation of Managua were duplicated several times in the pairwise

vector analyses. Note that these pairwise tests were solely based

on (allometry-corrected) raw shape coordinates and should there-

fore not be affected by duplication of data (unlike tests based on

principal component scores, for example). Based on a morpho-

logical argument, for the two crater lakes that contain thick-lipped

fish, L. Masaya and L. Apoyeque, both the thin-lipped A. citrinel-

lus and the thick-lipped A. labiatus were used together as source

population, whereas for the other crater lakes that do not contain

thick-lipped fish only A. citrinellus was used for the main analy-

ses. To test the effect of this assumption, trajectory analyses were,

however, repeated using either only A. citrinellus or both species

(A. citrinellus and A. labiatus) together as source population for

all crater lakes.

REGRESSIONS OF DEMOGRAPHIC AND

PHYSICO-ECOLOGICAL VARIABLES ON

MORPHOLOGICAL VARIABLES

All statistical analyses were performed in R 3.1.2 (R Develop-

ment Core Team 2014). In total, four different response variables

were investigated: Overall body shape change of a crater lake

and its respective source population in terms of Procrustes dis-

tance, variance in body shape of a crater lake, the coefficient of
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Figure 2. Overall genetic divergence based on 19,064 SNPs. (A) Individual variation along the first three axes of a principal component

analysis (PCA) of genetic variation. All axes are highly significant. Note that the order of PC1 and PC2 is reversed for better visual

representation of separation along PC2. (B) Individual Bayesian cluster assignment (Admixture) assuming K = 16 genetic clusters. (C)

Neighbor-net split graph based on genetic distance.

variation in body elongation (“CVei”) (Recknagel et al. 2014),

and the rate of morphological change per generation, defined as

the Mahalanobis distance of a crater lake and its source divided

by colonization time. Note that Mahalanobis distances scale by

within-group variance and are often regarded as a multivariate

analog of the haldane (Lerman 1965; Gingerich 2009; Arnegard

et al. 2010).

Six explanatory variables were tested: the four demographic

variables colonization time in number of generations, size of the

founder population in number of individuals, size of the admix-

ture event (secondary wave of colonization from the source pop-

ulation) in proportion of gene pool that has been replaced, and

long-term effective population size in number of individuals, as

well as the two eco-physiological variables mean depth of the

lake in meters and size of the littoral zone in km2. The latter two

were obtained from Waid et al. (1999) and references therein. An-

other potentially informative variable, surface area (Wagner et al.

2012), was highly correlated with mean depth (P = 0.018, R2 =
0.89) and thus omitted. We restricted the regression analyses to

only four of the inferred demographic variables, since we deemed

them among the most important factors determining the extent

and rate of morphological evolution. We note, however, that the

effect of admixture events is difficult to quantify in simple regres-

sion models, since the impact of genetic exchange depends likely

on the amount and timing in a complex way. In other words, a

large admixture event only few generations after the initial col-

onization would probably have less impact than a much smaller

admixture event after a longer time of separation. Regressions

were performed separately, because testing the effect of several

explanatory variables and possible interactions together in one

model was not sensible due to the low number of observations

(six crater lakes).

Results
POPULATION STRUCTURE AMONG AND WITHIN

LAKES

In agreement with their geographic isolation, each lake pop-

ulation formed a distinct genetic cluster, except for Tisma

Pond, which was indistinguishable from L. Managua. (Fig. 2A,

Fig. S2). An Admixture clustering analysis found the most sup-

ported number of genetic clusters (K) in our dataset to be between

14 and 16 (Fig. S3B), which additionally revealed some of the

sympatric species within lakes (Fig. 2B). Assuming K = 16, the

two species A. citrinellus and A. labiatus could be distinguished in

both great lakes. Interestingly, despite the impressive dimensions

of the great lakes—the maximum distance between our sampling

localities in L. Nicaragua was approximately 150 km—we did not
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detect any grouping of individuals with regard to sampling loca-

tions within either great lake (Fig. S4). On the other hand, in the

much smaller crater lakes Xiloá (�2 km in diameter) and Apoyo

(�6.6 km), four (corresponding to A. amarillo, A. viridis, A. sagit-

tae, and A. xiloaensis) and three genetic clusters (corresponding to

A. zaliosus and two clusters of benthic individuals) were apparent,

respectively. We note that a more fine-scale population structure

within the crater lakes has been addressed in detail before (Kautt

et al. 2016a; Machado-Schiaffino et al. 2017) and was thus not

further investigated here.

EVOLUTIONARY RELATIONSHIPS AND ADMIXTURE

AMONG CRATER LAKES

An individual-based phylogenetic split graph revealed that all

lake populations were connected to the main central network and

no two crater lakes diverged from a shared branch (Fig. 2C).

This is consistent with an independent colonization of all crater

lakes from the great lakes and previous studies that provided

evidence that all crater lakes were colonized from L. Managua

except for L. Apoyo, which was colonized from L. Nicaragua

(Barluenga and Meyer 2010; Machado-Schiaffino et al. 2017).

We refer readers to the results of our demographic analyses for

information on the order of divergence events (see below and

Table 1).

The independent histories of the crater lakes were also con-

sistent with formal tests of admixture in form of D-statistics

(Patterson et al. 2012), with one exception: While almost all

tests, comprising a crater lake forming a clade together with

its source population versus any other nonsympatric population

and an outgroup (Archocentrus centrarchus), were nonsignificant

(Table S3), all four-population tests involving a species from L.

Xiloá and L. Apoyeque were significant (P < 0.01), providing

evidence for gene flow between the two of them. Given the age

and colonization history of the lakes, we believe migration from

L. Xiloá into L. Apoyeque to be more likely than vice versa, but

in the absence of suitable populations for five-population tests

(Eaton and Ree 2013; Pease and Hahn 2015) the direction of gene

flow remains to be determined.

We note that defining a simple four-population species tree

in our system, in which multiple lakes have been colonized from

the same source population, is nontrivial and the results should

be considered with caution. Moreover, we note that these tests

are not expected to be sensitive to admixture (secondary waves of

colonization) from the same source population into a crater lake

population (see below).

COLONIZATION HISTORY

All crater lakes’ colonization histories were inferred using coales-

cent simulations and the site frequency spectrum (Excoffier et al.

2013). Note, that Las Canoas is not a crater lake, but a small lake

that had been permanently connected by a riverine connection to

L. Nicaragua until the construction of a dam. Thus, it was not

included in these or subsequent analyses, but mainly included in

the genetic analyses above, to rule out that it has contributed to

the gene pool of any of the crater lakes (i.e., to test for introgres-

sion). Combining our results here with those of previous studies

(Kautt et al. 2016a; Kautt et al. 2016b; Machado-Schiaffino et al.

2017) allowed us to evaluate the demographic history of the Mi-

das cichlid species complex in its entirety (Table 1). In the case

of all crater lakes a very similar demographic model was most

supported (for details see Kautt et al. 2016b). The colonization of

the crater lakes happened recently (only between 580 and 1680

generations ago) and by a small founder population (ca. 30–260

individuals), which started to grow exponentially immediately af-

ter the colonization of the new lakes. Only in the case of L. Masaya

was the improvement of the model gained by adding population

growth outweighed by the penalty of adding an extra parameter

(Anderson 2008). Thus, the best model for L. Masaya did not

include a population size change. Apart from that, the models for

all lakes were identical, differing only in the presence or absence

of one or both of the possible migration rates between a crater

lake and its source population (Table 1). Surprisingly, an admix-

ture event from the source populations into the crater lakes was

supported in all cases, albeit to varying degrees with a range of

4.3% in L. Apoyo up to 32.3% replacement of the resident gene

pool in L. As. Managua.

While we consider the above described models as the best

models, for L. As. León and L. Masaya a model in which

the colonization happened before the bottleneck in the source

lakes received higher support. Yet, these models involved di-

vergence times that are older than the geologically determined

ages of the crater lakes themselves (based on the assumption

of a generation time of more than one year) and levels of ge-

netic exchange that appear unrealistically high for remote crater

lakes (relatively high bidirectional continuous gene flow together

with admixture events on the order of 32.9 and 57.1%). There-

fore, we deemed these models biologically unrealistic. Nonethe-

less, we present the estimates for both models for these two

crater lakes in addition to what we consider the best models

(Table S4) and performed regressions on morphological parame-

ters also with these alternative demographic parameter estimates

(Fig. S5).

The average long-term effective population sizes (Table S5)

of the source populations (around 20,000 individuals) were, as

expected, an order of magnitude larger than the crater lake pop-

ulations (ca. 1000–3000). Crater Lake Masaya was again an

exception and, while not as genetically diverse as the source pop-

ulations, its long-term effective population size (ca. 8500) was

estimated to be several times larger than that of any other single

crater lake population.
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Table 1. Crater lake colonization histories.

Nfounder Ncurrent admix MIGcrater→source MIGsource→crater Tadmix Tcol

L. Apoyeque∗ 111 14,717 0.162 376 577
(46–201) (1483–32,992) (0.083–0.224) (292–472) (427–772)

L. Apoyo† 263 6461–43,960 0.043 892 1678
(128–738) (0–48,938) (0.009–0.093) (859–1538) (1234–2257)

L. As. Managua‡ 32 19,460 0.323 8.95 × 10–5 507 797
(0–71) (5336–43,039) (0.184–0.501) (5.40 × 10–5 –

1.14 × 10–4)
(384–652) (516–1284)

L. As. León 169 9091 0.119 3.15 × 10–5 1.70 × 10–5 737 1550
(0–237) (6299–13,535) (0.074–0.160) (1.12 × 10–5 –

4.78 × 10–5)
(0–2.71 × 10–5) (507–901) (1352–1798)

L. Masaya∗ 8614§ 8614 0.210 6.06 × 10–5 244 1561
(7799–9761) (7799–9761) (0.145–0.292) (1.51 × 10–5 –

9.77 × 10–5)
(116–395) (1391–1789)

L. Xiloá† 146 12,144 – 35,544 0.286 1.72 × 10–5 891 1318
(37 – 557) (0–49,894) (0.107–0.433) (0 – 8.60 × 10–5) (767 – 1374) (1198 – 2064)

∗
Data from Machado-Schiaffino et al. 2017.

†Data from Kautt et al. 2016a.
‡Data from Kautt et al. 2016b.
§Best demographic model did not include a population size change in crater lake.

Shown are maximum-likelihood parameter point estimates and 95% confidence intervals based on 25-50 parametric bootstrap replicates. For each crater

lake, given are the inferred size of the founder population “Nfounder” and the current population size “Ncurrent” (a range in case of several sympatric

species) in number of individuals, the proportion of admixture “admix” (i.e., secondary wave of colonization) from the source, migration rates “MIG” in

proportion of alleles per generations (direction in forward time), and times of admixture event “Tadmix” and colonization “Tcol” in number of generations.

Note that estimates specific to the source populations were omitted to enhance readability.
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Figure 3. Overall morphological divergence based on 12 geometric morphometric landmarks. (A) Individual variation in body shapes

along the first two axes of a principal component analysis (PCA). The main change in body shapes along PC1 is indicated by wireframe

deformation grids. The positions of used landmarks are indicated on the top right. (B) Phenotypic trajectories along the first two axes of

variation in a between-group PCA (bgPCA) of populations’ least-square means. Note that several crater lakes were colonized from the

same source lake. In the case of crater lakes Apoyeque and Masaya trajectories originate from a hypothetical intermediate morphology

of the two species in the source lakes, since these two lakes have likely been colonized by a mix of both of them.

MORPHOLOGICAL DIVERGENCE, DIVERSITY, AND

PARALLEL EVOLUTION

The largest amount of variation in body shapes (principal compo-

nent 1 with 29.2 %) was captured in overall body elongation

(Fig. 3A). Strikingly, every single crater lake population was

found to be generally more elongated than its respective source

population and this phenotypic axis explained 56.2% of variation

in a between-group PCA (Fig. 3B). Interestingly, even within the
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two crater lakes that harbor each one formally described limnetic

and several benthic species (L. Apoyo and L. Xiloá), all species–

also the benthic ones—are at least slightly more elongated than

the source populations (Fig. 3B). The two limnetic species, A.

zaliosus in L. Apoyo and A. sagittae in L. Xiloá were clearly the

most diverged species (Table 3) and have done so in a remarkable

parallel fashion (Fig. 3B).

However, there were also significant differences in the ex-

tent and direction of crater lake divergence in multivariate space.

Note that pairwise tests were based on all 24 allometry-corrected

landmark coordinates, whereas divergence was visualized along

only the first two axes of a PCA. Midas cichlids in Crater Lake

Masaya were significantly less diverged from their source popu-

lation than almost all other crater lake populations, while the two

limnetic species, A. zaliosus and A. sagittae, were significantly

more diverged from their source population than any of the other

populations (Table 3). Regarding the direction of change, 81 out

of 91 pairwise comparisons were significantly different (Table 3).

While most vectors were nonetheless more parallel than orthog-

onal (Table 3), the divergence vectors of four out of five species

from L. Apoyo were almost orthogonal to L. Masaya (72.0–90.3°)

and deviated thus from parallelism (Table 3). Assuming that all

crater lakes were colonized by A. citrinellus only or by both

species (A. citrinellus and A. labiatus) from the source lakes to-

gether did not qualitatively change these results (Table S6). In

conclusion, all crater lake populations have mainly diverged in a

parallel fashion by evolving overall more elongated body shapes,

yet we also detected significant differences in divergence vectors

that are related to other axes of body shape variation.

In addition to morphological divergence, we were interested

in the overall amount of body shape variation within crater lake

populations. We found the highest variance in L. Apoyo, followed

by, L. As. Managua, L. Xiloá, L. Masaya, L. Apoyeque, and

L. As. León (Fig. 4B). A similar pattern (except that L. Apoyo

was followed by L. Xiloá and L. Masaya) was obtained with a

univariate measure of elongation, the coefficient of variation in

elongation index (CVei), supporting again the notion that body

elongation is a key component in body shape variation in Midas

cichlids.

ASSOCIATION BETWEEN DEMOGRAPHIC AND

ECOLOGICAL FACTORS AND MORPHOLOGY

The extent of morphological divergence of a crater lake popula-

tion and its source was negatively correlated with the size of the

founder population (adjusted R2 = 0.861, P = 0.005) (Fig. 5A),

but was not significantly correlated with time since colonization

(Table S7). Note that founder population size was log-transformed

due to the large range of data points, spanning two orders of

magnitude. But, this pattern was strongly driven by L. Masaya,

which is a clear outlier in our dataset, since our best demographic

model did not include a population size change and, therefore, the

founder population size of L. Masaya equals the current effective

population size. This is certainly unrealistic. We note, however,

that if we use the alternative model of L. Masaya’s colonization

history (and consequently also the alternative model for L. As.

León)–which included a population size change–the correlation

was still significant and, in fact, became even stronger (adjusted

R2 = 0.893, P = 0.003) (Fig. S5A). Thus, our data showed a neg-

ative correlation between the extent of morphological divergence

and founder population size, albeit this relationship is arguably

strongly influenced by L. Masaya and has to be considered with

caution. Neither the proportion of admixture (secondary coloniza-

tion from the source lakes), nor the long-term effective population

sizes was significantly correlated with any of the morphological

response variables.

Independent of which models’ (best or alternative) parame-

ter estimates were used, the rate of morphological divergence de-

creased significantly with time (adjusted R2 = 0.903, P = 0.002

for best models and adjusted R2 = 0.964, P = 3.1 × 10−4 for al-

ternative models) (Fig. 5B and Fig. S5B). In case of the alternative

demographic models’ estimates an exponential relationship pro-

vided a much better fit to the data (adjusted R2 = 0.964; Fig. S5B)

than a linear one (adjusted R2 = 0.718, P = 0.021), whereas for

the best demographic models’ estimates a linear and exponential

relationship fit almost equally well (R2 = 0.903 and 0.894 with

P = 0.002 and 0.003, respectively). Whether linearly or exponen-

tially, these results suggest that body shape divergence progresses

rapidly after the colonization of a crater lake and starts to slow

down with time soon afterwards.

Concerning ecological factors, the extent (not rate) of mor-

phological divergence of a crater lake population compared to its

source population was negatively correlated with the size of the

littoral zone (adjusted R2 0.758, P = 0.015) (Fig. 5C). Given that

the source lakes represent an almost exclusively littoral habitat this

association is in agreement with the notion that a larger change in

habitat will result in a larger morphological change. Finally, our

data not only confirm previous findings that the average depth of

a crater lake predicts the amount of variation in body elongation

(Recknagel et al. 2014) of its habitant population (adjusted R2 =
0.843, P = 0.006) (Fig. 5D), but furthermore show that the over-

all variation in body shape is positively correlated with the mean

depth of a crater lake (Fig. 5E). In the latter case, an exponential

relationship (log-transformed depth; adjusted R2 = 0.675, P =
0.028) provided a better a fit to the data than a linear relationship

(R2 = 0.605, P = 0.042).

In summary, the extent of morphological change after the

colonization of a crater lake seems to be larger in populations that

were founded by fewer individuals and more pronounced in crater

lakes that are more dissimilar compared to the source lake. The

rate of this change slows down with time. The amount of body
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Figure 4. Schematic illustration summarizing main data used for regression analyses. (A) The four main explanatory demographic and

ecological variables and (B) the four morphological response variables. Demographic parameters were inferred from genetic data here

and in previous studies. Ecological/physical parameters were obtained from Waid et al. (1999). Morphological data were generated in

this study. Morphological change = Procrustes distance, Rate of change = Mahalanobis distance/colonization time in generations. Note

that only explanatory variables that were significantly correlated with at least one of the response variables are shown. See main text

for details and Table S7 for all regression results.

shape variation within a crater lake, especially body elongation,

is positively associated with the average depth of a crater lake.

Discussion
Midas cichlids in Nicaragua form a young radiation of closely

related lineages inhabiting crater lakes that all stem from the

same extant source populations in the great lakes (Barluenga and

Meyer 2010). Which of these lineages constitute species is in

our opinion subject to taxonomical issues (discussed in Text S1),

but should not be of relevance to the main conclusions we have

drawn here. Unlike other cichlids in these crater lakes (Fruciano

et al. 2016), Midas cichlids have morphologically diverged from

the source populations and in at least two crater lakes they have

diversified in situ (Barluenga et al. 2006; Kautt et al. 2016a). Why

and how (parallel) Midas cichlids diverge and when exactly they

diversify were still largely unanswered questions. In this study,

we aimed to test whether intrinsic (e.g., adaptive introgression,

amount of genetic variation, time since colonization) or extrin-

sic factors (e.g., ecological opportunity) are better predictors of

morphological divergence in Midas cichlids. We found evidence

for introgression from L. Xiloá into L. Apoyeque (Table 2), and

unexpectedly, our demographic analyses provided support for sec-

ondary waves of colonization from the source population into all

crater lakes. While these admixture events may have facilitated

diversification in certain cases (Kautt et al. 2016a), their effect

is likely to be complex and not readily predictable (see below).

After colonization, all crater lake populations have diverged from

the source population in body morphology and the main direction

is toward more slender body shapes. The extent of this divergence

is best predicted by how dissimilar a crater lake is to its source

population (size of littoral zone). The amount of body shape vari-

ation within a crater lake is best predicted by the mean depth

of the lake. Time since colonization was not significantly asso-

ciated with either divergence or amount of variation, but rather,

the rate of morphological change is high in the beginning and

seems to slow down with time. While the size of the founder pop-

ulation was (negatively) associated with phenotypic divergence,

this result was driven by a single observation (L. Masaya) and

we consider it with caution. Thus, we conclude that ecology is

most likely the main factor explaining allopatric divergence and

sympatric diversity in Midas cichlids.

ISOLATION AFTER COLONIZATION VERSUS

REPEATED COLONIZATIONS AND ADMIXTURE

Hybridization and genetic introgression can be important fac-

tors facilitating diversification (Abbott et al. 2013; Meier et al.

2017; Richards and Martin 2017) and one of our first objectives
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Figure 5. Linear regression analyses of demographic and ecological explanatory variables against morphological response variables.

(A) Morphological divergence of a crater lake population compared to its source population is negatively associated with the size of the

founder population. (B) The rate of this change decreases with the time since colonization. (C) Additionally, the extent of morphological

change is negatively associated to the size of a crater lake’s littoral zone. The variation of a crater lake population in terms of (D)

body elongation and (E) overall body shape is positively associated with the mean depth of the respective crater lake. Shown are only

significant regressions (P < 0.05). See Table S7 for all regression results. Note the log-transformation of explanatory variables in some

regressions.

was to test for signs of genetic exchange among crater lakes.

We found evidence for introgression among crater lakes in one

case: most likely from L. Xiloá into L. Apoyeque. Given their

close geographic proximity–the crater rims are only around 700 m

apart–gene flow between these two lakes seems plausible. While

this admixture event evidently did not trigger speciation, since

L. Apoyeque only harbors a single population of Midas cichlids,

it could have contributed to the overall morphological similarity

of L. Xiloá and L. Apoyeque (Fig. 3, Table 3) and facilitated

L. Apoyeque’s population to evolve more slender body shapes

as a response to the new selection pressure of the crater lake

environment.

Apart from this one admixture event among crater lakes, we

found support for an admixture event from the source population

into the crater lake populations in all cases (i.e., a secondary wave

of colonization). Except for L. Xiloá, which may have been con-

nected to the closely located great L. Managua (Fig. 1) as recently

as 2000 years ago due to pronounced water level fluctuations and

the low crater rim of L. Xiloá (Cowan et al. 2002), all other crater

lakes are very remote and have to the best of our knowledge never

been connected to any other water body. Thus, the strong sup-

port for admixture events in all cases was unexpected, especially

since we previously found more evidence for a single versus mul-

tiple colonizations events even for L. Xiloá (Elmer et al. 2013).

We note, however, that the results of Elmer et al. (2013) were

based on a single nonrecombining locus (mtDNA) and therefore

of limited power compared to the genome-wide data used in this

study. Yet, in any case, fish must have somehow been transported
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Table 2. D-statistics support a close genetic relationship between L. Apoyeque and L. Xiloá.

Pop1 (W) Pop2 (X) Pop3 (Y) Pop4 (Z) D-statistic BABA ABBA Z-score P-value

Aye cit Man cit Xil sag outgroup 0.1604 54 39 5.123 3.01 × 10–7

Aye cit Man lab Xil sag outgroup 0.1734 55 39 4.933 8.10 × 10–7

Aye cit Man cit Xil hyb outgroup 0.1539 52 38 4.849 1.24 × 10–6

Aye cit Man lab Xil hyb outgroup 0.1705 53 37 4.785 1.71 × 10–6

Aye cit Man cit Xil xil outgroup 0.1499 53 39 4.616 3.91 × 10–6

Aye cit Man lab Xil xil outgroup 0.1620 53 38 4.506 6.61 × 10–6

Xil vir Man cit Aye cit outgroup 0.1342 52 40 4.082 4.46 × 10–5

Aye cit Man cit Xil vir outgroup 0.1191 52 41 4.021 5.80 × 10–5

Xil sag Man cit Aye cit outgroup 0.1573 54 40 3.831 1.28 × 10–4

Aye cit Man lab Xil vir outgroup 0.1248 52 41 3.762 1.69 × 10–4

Xil vir Man lab Aye cit outgroup 0.1361 52 40 3.708 2.09 × 10–4

Xil sag Man lab Aye cit outgroup 0.1578 55 40 3.450 5.61 × 10–4

Xil ama Man cit Aye cit outgroup 0.1046 50 41 3.448 5.65 × 10–4

Aye cit Man cit Xil ama outgroup 0.1035 50 41 3.423 6.19 × 10–4

Aye cit Man lab Xil ama outgroup 0.1082 51 41 3.213 1.31 × 10–3

Xil ama Man lab Aye cit outgroup 0.1066 51 41 2.943 3.25 × 10–4

Xil xil Man cit Aye cit outgroup 0.1371 53 40 2.876 4.03 × 10–3

Xil hyb Man cit Aye cit outgroup 0.1258 52 40 2.837 4.55 × 10–3

Xil xil Man lab Aye cit outgroup 0.1397 53 40 2.771 5.59 × 10–3

Xil hyb Man lab Aye cit outgroup 0.1266 53 41 2.613 8.98 × 10–3

Populations are abbreviated by lake of origin (Aye = L. Apoyeque; Man = L. Managua; Xil = L. Xiloá) and species (cit = A. citrinellus; lab = A. labiatus; ama

= A. amarillo; vir = A. viridis; hyb = hybrids; sag = A. sagittae; xil = A. xiloaensis).

Shown are all quadruplets of the form (((crater lake population W, source population X), any other nonsympatric population Y), outgroup Z) that returned

a significant D-statistic (P < 0.01). The complete list of performed tests is provided in Table S3.

into the crater lakes in the first place (e.g., by birds, humans, or

hurricanes (Bajkov 1949; Elmer et al. 2013)) and it is certainly

possible that such events have occurred repeatedly. Continuous

gene flow, on the other hand, is hard to imagine; especially in the

direction from the crater lakes into the great lakes.

From a technical point of view, distinguishing between recent

divergence with little gene flow versus more ancient divergence

with more gene flow, especially in populations that have under-

gone recent bottlenecks, remains challenging (Loh et al. 2013;

Hey et al. 2015). Thus, we warrant caution concerning the pres-

ence and magnitude of the inferred admixture events and levels of

continuous gene flow. If confirmed, our results would in any case

suggest that admixture events probably have a rather complex

influence on diversification rates: the crater lake with the highest

species richness, L Apoyo, was inferred to have experienced the

lowest proportion of admixture (Table 1). Lake As. León, on the

other hand, is inhabited by the least variable population, although

it shares a similar colonization and admixture history with L.

Xiloá , which harbors four species. Therefore, we tentatively con-

clude that the exact effects of admixture events from the source

populations will likely vary and depend on the timing, size, and

exact allelic contribution in a complex way.

SIMILARITIES AND DIFFERENCES AMONG CRATER

LAKE POPULATIONS’ HISTORIES

The inferred colonization histories of the crater lake populations

mostly conform to our expectations and involve a founding event

by a few dozen to a few hundred fish, which started to grow

exponentially after colonization. While the colonization histories

of most crater lakes are very similar, all of our analyses suggest

that Crater Lake Masaya has retained much more of the ances-

tral genetic variation stemming from the source lakes than any

other crater lake population, as evidenced by its close genetic af-

filiation to the source lakes in the genetic PCA and split graph

(Fig. 2), levels of genetic differentiation (Table S2), and inferred

demographic history (Table 1). To our knowledge, L. Masaya

has never been connected to the great lakes and its geographic

location (elevation profile) makes it hard to imagine a histori-

cal riverine connection. Why and how L. Masaya exhibits such

an unusual pattern remains unknown. Nonetheless, knowledge

about the different demographic histories of the crater lake pop-

ulations provides valuable information for future studies that, for

example, aim to elucidate the genetic bases underlying adaptive

traits in Midas cichlids (e.g., association studies, Rosenberg et al.

2010).
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FACTORS DRIVING ALLOPATRIC BODY SHAPE

DIVERGENCE IN MIDAS CICHLIDS

The adaptive radiation of Midas cichlids has occurred (and is

probably still ongoing) at two different hierarchical levels. At the

first level, that is, among allopatric crater lake populations, we

show that the main direction of morphological change was re-

markably parallel (Fig. 3B). All crater lake populations, and even

all sympatric species within crater lakes, evolved a more slender

body shape than their source population. We note, that trajectories

of sympatric species are not fully independent, but would ideally

take the morphology of shared ancestors into account. Due to a

lack of fossil records this was not possible and we cannot rule

out that benthic species became secondarily more deep-bodied

again. Nonetheless, their current body shapes are still more elon-

gated than the source population. Given the absence of fossil data,

we can, however, also not rule out that the apparent parallelism

of the crater lake populations is actually due to the evolution of

deeper bodies in the source lakes. The assumption of evolutionary

stasis (of body shapes) in the source lakes rests on the fact that

the bathymetric profile of the huge and shallow source lakes has

most likely not changed considerably since the colonization of the

crater lakes a few thousand years ago. Moreover, the phenotypic

spaces of the source lakes overlap largely with that of Crater Lake

Masaya (Fig. 3A), supporting the notion that the presumed an-

cestral state has mostly persisted in this crater lake and rendering

directional evolution in the source lakes unlikely. A change in the

overall direction toward more slender body shapes in the crater

lakes is also consistent with eco-morphological considerations

(Webb 1984; Langerhans and Reznick 2010); crater lakes provide

more habitat in which free-swimming is more important than ma-

neuvering. Moreover, the repeated evolution of more slender body

shapes in crater lakes has also been found in many populations of

crater lake cichlids in Uganda (Machado-Schiaffino et al. 2015).

While all crater lake populations evolved mostly in parallel

toward more slender body shapes (which explained the majority of

body shape variation), pairwise analyses revealed that almost all

phenotypic trajectories occurred in significantly different direc-

tions (Table 3). This deviation from complete parallelism could

be due to random processes or reflect local adaptation (Stuart

et al. 2017). Future studies investigating additional phenotypic

traits and other lake-specific parameters (e.g., chemical, available

diet) would be interesting and might reveal factors that explain

the difference in divergence vectors (e.g., Stuart et al. 2017). In

any case, our result here is consistent with a previous study that

found all populations to be morphologically distinct (Elmer et al.

2010a), and supports the notion that each allopatric crater lake

population contributes to the overall phenotypic diversity of this

species complex.

Apart from occurring mostly along a predicted direction, our

data suggest that the extent of divergence is to some extent pre-

dictable: divergence is more pronounced in crater lakes that have

a smaller littoral zone and, therefore, presumably present a more

dissimilar environment from that of the source lakes. This inde-

pendently evolved fit between ecology and morphology both in

direction and extent provides strong support for the role of natu-

ral selection in shaping body shape evolution (Losos et al. 1998;

Nosil et al. 2002). Interestingly, our results also show that the

rate of morphological change decreases with time since coloniza-

tion, suggesting that the pace of morphological change is very

rapid shortly after the colonization of a crater lake and then slows

down with time. This finding is in agreement with the potentially

analogous rapid morphological changes of mammals after the col-

onization of islands (Millien 2006) and the more general pattern

that evolutionary rates are not maintained over longer time scales

(Kinnison and Hendry 2001; Hendry 2017, pp. 71–75). Further-

more, it confirms the theoretical prediction that bursts of rapid

diversification rather than constant rates throughout time are ex-

pected in adaptive radiations (Gavrilets and Losos 2009; but see

Harmon et al. 2010) and that adaptation to a new environment can

happen extremely rapidly (Losos et al. 1997; Reznick et al. 1997;

Lescak et al. 2015).

Interestingly, considering the speed of morphological change

and the detected founder events, our results imply that Midas

cichlids were not hindered in their ability to respond quickly

to the new selection pressures of the crater lake environment,

despite an apparent reduction in genetic variation. We note that

body shape seems to be to a large extent genetically determined

in Midas cichlids, as evidenced by the maintenance of distinct

body shapes in the laboratory (Franchini et al. 2014) and a failure

of plasticity experiments to induce more elongated body shapes

(Kautt et al. 2016b).

Adaptation to a novel environment is usually expected to

be faster when large amounts of standing genetic variation are

available (Barrett and Schluter 2008; Reid et al. 2016). On the

contrary, we found that morphological divergence was larger in

crater lake populations that were founded by fewer individuals.

This suggests that founder effects might facilitate morpholog-

ical evolution, as envisioned by Mayr (1954). Empirical sup-

port for the effect of founder events has been shown in Anolis

lizards (Kolbe et al. 2012). Yet, the correlation in our dataset

was mainly driven by one crater lake (L. Masaya) and the ro-

bustness of this result is thus debatable. Generally, with only six

crater lakes (observations) our statistical analyses are naturally

limited. Multivariate models taking possible interactions among

the explanatory variables into account and rigorous model testing

approaches were therefore not sensible. Nonetheless, although

they may be limited in number, studies of natural replicates are

arguably the most meaningful way to identify and understand the

actual mechanisms that drive evolution in the wild (Hendry 2017,

p.3).
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FACTORS EXPLAINING THE PROPENSITY FOR

SYMPATRIC DIVERSIFICATION

The second level that has contributed to the diversity of Midas

cichlids is the diversification that has happened within crater lakes

(Barluenga et al. 2006; Kautt et al. 2016a). The multiple endemic

species inhabiting crater lakes Apoyo and Xiloá can be regarded

as small-scale adaptive radiation within the larger adaptive radia-

tion of the entire species complex. But, stemming from the same

source population, why did diversification take place in these two

crater lakes and not the other ones? Our results show that the

amount of morphological variation within a crater lake is posi-

tively correlated with the mean depth of a crater lake (Fig. 5D and

E). This result quantitatively expands on Recknagel et al. (2014),

who found the same correlation with a simple univariate measure

of body elongation (“CVEI”). Neither the size of the founder popu-

lation nor the time since colonization were significantly positively

associated with the amount of body shape variation (Table S6).

Thus, we think that ecological opportunity in the form of habitat

diversity is the main factor that explains whether sympatric diver-

sification will happen in Midas cichlids or not. The role of other

fish species is difficult to quantify, but, qualitatively, the presence

or absence of other fish does not seem to affect the propensity for

sympatric diversification in Midas cichlids (see Text S2 for more

details).

At a larger taxonomic scale, the questions of why exactly

Midas cichlids are diversifying so rapidly remains open. In this

respect, a closely related lineage of Midas cichlids, Archocentrus

centrarchus, has also colonized several of the crater lakes, but

not diverged morphologically in any way: unlike Midas cichlids,

individuals of A. centrarchus from L. Xiloá are morphologically

indistinguishable from their source in L. Managua and have not

diversified into several genetic clusters in sympatry (Fruciano

et al. 2016). Priority effects are unlikely to explain this pattern, as

A. centrarchus and Neetroplus nematopus–another Neotropical

cichlid—presumably share a very similar colonization history

with Midas cichlids in L. Xiloá (Elmer et al. 2013; Franchini

et al. 2017). Whether Midas cichlids exhibit any intrinsic features

(e.g., genetic architecture of adaptive traits and mate choice) that

make them more prone to diverge and diversify than other cichlids

in Nicaragua is an ongoing research question that we are currently

addressing with hundreds of completely sequenced genomes.

Conclusions
Our results suggest that morphological diversity in the Midas ci-

chlid species complex is to a large extent influenced by ecological

factors in a deterministic way. This conclusion is in line with other

studies of well-known organismal radiations (Losos et al. 1997;

reviewed in Schluter 2000), and further supports the preeminent

role of natural selection in shaping biodiversity. Morphological

diversification in Midas cichlids happens at two different hier-

archical levels. After the colonization of a crater lake, Midas

cichlids diverge morphologically most strongly, though not ex-

clusively, from their source population toward more slender body

shapes. In the case of one crater lake, L. Apoyeque, this might have

been facilitated by introgression from L. Xiloá. Across the entire

species complex, however, admixture among crater lakes or in

the form of secondary waves of colonization from the same source

cannot explain the pattern of body shape evolution. Instead, diver-

gence is more pronounced in crater lakes that are more dissimilar

compared to the source lakes. Interestingly, morphological diver-

gence seems to happen rapidly after colonization, possibly associ-

ated with ecological divergence and speciation and decreases with

time in all of the crater lake radiations. Finally, deeper crater lakes

allow for a larger variation in body shapes of their resident popu-

lation, which, in turn, is positively associated with the number of

species such crater lakes can sustain. Overall, our results support

a general scenario in which fish evolve toward a new adaptive

optimum after the colonization of a crater lake by directional se-

lection (i.e., adaptation to the crater lake environment in general)

and then possibly start to diversify via disruptive (divergent) se-

lection within a lake if ecological opportunities (e.g., deep crater

lakes providing environmental heterogeneity) exist. Especially in

the context of multispecies lakes (L. Apoyo and L. Xiloá) this is in

good agreement with theoretical expectations of competitive spe-

ciation models (Rosenzweig 1978; Pimm 1979; Gavrilets 2004,

p. 410). More generally, this study shows how an integration of

molecular and morphological data in a young system of natu-

ral replicates–a rare and uniquely suited natural experiment—can

help to further our understanding of how biodiversity is gener-

ated and why diversification rates differ among taxa; even closely

related ones stemming from the same source population.
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