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Abstract

Freshwater sulfide springs have extreme environmental conditions that only few vertebrate

species can tolerate. These species often develop a series of morphological and molecular

adaptations to cope with the challenges of life under the toxic and hypoxic conditions of sul-

fide springs. In this paper, we described a new fish species of the genus Jenynsia, Anablepi-

dae, from a sulfide spring in Northwestern Argentina, the first in the family known from such

extreme environment. Jenynsia sulfurica n. sp. is diagnosable by the lack of scales on

the pre-pelvic area or the presence of a single row of scales, continuous or not, from the isth-

mus to the bases of the pelvic fins. Additionally, it presents a series of morphological and

molecular characteristics that appear convergent with those seen in other fish species (e.g.,

Poeciliids) inhabiting sulfide springs. Most notably, J. sulfurica has an enlarged head and

postorbital area compared to other fish of the genus and a prognathous lower jaw with a

hypertrophied lip, thought to facilitate respiration at the air-water interface. Analyses of cox1

sequence showed that J. sulfurica has two unique mutations resulting in amino acid substi-

tutions convergent to those seen in Poeciliids from sulfide springs and known to provide a

physiological mechanism related to living in sulfide environments. A phylogenetic analysis,

including molecular and morphological characters, placed J. sulfurica as sister taxa to J.

alternimaculata, a species found in nearby, non-sulfide habitats directly connected to the

sulfide springs. Thus, it can be inferred that the selection imposed by the presence of H2S

has resulted in the divergence between these two species and has potentially served as a

barrier to gene flow.
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Introduction

Extremophile species inhabiting environments with abiotic conditions lethal for most organ-

isms, are of great interest to physiologists, ecologists and evolutionary biologists [1, 2]. These

species offer valuable information on the limits of tolerance to abiotic conditions (e.g., [3]), on

the process of adaptive divergence (e.g, [4]), and in the end, about the predictability of evolu-

tion (e.g., [5]). In fact, species inhabiting extreme ecological conditions have provided some

very interesting cases of evolutionary convergence at different levels of biological organization,

from molecular changes, to physiology, morphology, and performance [6, 7].

Most extremophiles are prokaryotic organisms [8], however, also a significant number of

invertebrates and vertebrates successfully colonized extreme environments (e.g., [9]). Among

the later, teleost fishes have invaded a range of extreme environments (see [2]). Freshwater

sulfide springs, having high concentrations of hydrogen sulfide, are among such extreme envi-

ronments that were successfully colonized by only a handful of species [10]. Although hydro-

gen sulfide is commonly found in low abundance in many habitats, and can be detoxified by

most organisms at these lower concentrations [11, 12], elevated concentrations are extremely

toxic by affecting cellular respiration [13, 14]. Additionally, sulfide springs often have elevated

temperatures and decreased dissolved oxygen levels [15], which magnifies the toxicity of

hydrogen sulfide, given that the detoxification process requires its oxidation [13]. Only four

fish families have evolved adaptations to cope with these extreme conditions: Cyprinodontidae

(four species), Poeciliidae (13 species), Synbranchidae (one species) [10], and Rivulidae (1 spe-

cies) [16]. Among these, Poeciliidae are the most studied family, and some species evolved a

series of adaptations that enable them to efficiently acquire oxygen in the hypoxic conditions

of sulfide springs. Most species from sulfide springs have enlarged heads that allow for an

increase in gill area to maximize oxygen uptake in these oxygen-poor environments [15, 17,

18]. Associated to this, fish in sulfide springs often present modifications of the mouth (e.g.,

enlarged lower jaw, hypertrophic lips, mouth appendages) that are thought to facilitate respira-

tion at the water-air interface, where oxygen concentrations are elevated compared to the rest

of the water column [18–20]. Moreover, there is convergent molecular evolution among sul-

fide spring fish species at the cytochrome oxidase complex (cox), a primary target of hydrogen

sulfide toxicity in the respiratory chain [21]. Convergent amino acid substitutions in the cox1
protein across different sulfide-adapted Poecilia species have been proposed to reduce suscep-

tibility to hydrogen sulfide.

Here, we describe a new fish species from a thermal sulfide spring (having high concentra-

tions of H2S) in Northwestern Argentina. This is the first species in the family Anablepidae

(Cyprinidontiformes) to be found in this type of habitat; thus, adding a new family to the

diversity of fish inhabiting sulfide springs. It is a livebearing fish of the genus Jenynsia Günther

[22], which currently is composed of 14 valid species, considering the last species described

(i.e. J. darwini Amorim) and the recognition of J.multidentata (Jenyns) as a junior synonym

of J. lineata (Jenyns) [23]. The genus is distributed in South America from the state of Rio de

Janeiro, Brazil, to Rı́o Negro, Argentina, and from coastal Atlantic drainages at sea level to riv-

ers bordering the Andean region, from southern Bolivia to central Argentina [23, 24], encom-

passing a range of altitudes from 0–3000 m.a.s.l. (pers. obs.).

Despite this wide geographic range of distribution exhibited by members of the genus

Jenynsia, almost all species have relatively restricted distributions with the exception of the J.
lineata species-complex, which ranges in distribution from fresh to brackish and marine

waters [23–26]. Some species of the genus can also be found in environments with a great vari-

ation in air temperature. Hued & Bistoni [27] described J. lineata as an environmentally toler-

ant species following the criteria of Karr et al. [28], since it can be found in a wide range of
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water conditions, including even polluted waters. Thus, members of the genus Jenynsia, like

other cyprinodontiform fishes (e.g., [15, 29–31]), can tolerate environmental conditions that

are generally harmful to other fishes. However, no anablepid species was previously known to

occur in environments containing high concentrations of hydrogen sulfide. Here, we first

describe the newly discovered species of Jenynsia fish from a sulfide spring in Northern Argen-

tina; then, we show that the mitochondrial cox1 gene of the new species has amino acid substi-

tutions that are convergent to those seen in species of Poeciliidae adapted to sulfide springs

[10, 15, 17, 18]; and finally we provide a new phylogenetic hypothesis based on the morpholog-

ical data matrix of Ghedotti [25] and posteriorly modified by Aguilera et al. [24], with the addi-

tion of available DNA data.

Results

Jenynsia sulfurica, new species

urn:lsid:zoobank.org:act: 1F6C69F5-C697-49E8-91F9-E77A502192F8 (Figs 1 and 2).

Holotype

CI-FML 7286 (Fig 1), 21.6 mm SL, Laguna La Quinta, thermal system at western flank of the

Santa Bárbara hills (23˚53’3.03"S, 64˚28’2.74"W), Santa Bárbara Department of Jujuy Province,

Northwestern Argentina. Col: G. Aguilera, J.M. Mirande, G.E. Terán, F. Alonso. November

13, 2016.

Paratypes

CI-FML 7287 (Fig 1), 19 ex, 20.4–32.8 mm SL, IBIGEO-I 465, 10 ex, 18.7–29.9 mm SL. All col-

lected with holotype.

Fig 1. Preserved holotype and paratype specimens of Jenynsia sulfurica sp. nov. Above: holotype CI-FML 7286, male, 21.6 mm

SL; below: paratype CI-FML: 7287, female, 32.8 mm SL, from the La Quinta lagoon, Santa Barbara department, Jujuy province,

Argentina.

https://doi.org/10.1371/journal.pone.0218810.g001
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Diagnosis

The genus Jenynsia is subdivided into two subgenera, one containing five species only known

from inland habitats in Brazil (Plesiojenynsia) and a more widely distributed subgenus includ-

ing nine previously described species (Jenynsia). The new species herein described (Fig 1)

Fig 2. Live specimens of the sulfide-tolerant species Jenynsia sulfurica sp. nov. Lateral view of a (A) male and (B) female

individual, exhibiting large heads and a prognathous lower jaw with a hypertrophied lip (indicated by arrows) which facilitate

respiration at the air-water interface. (C) dorsal and (D) ventral view of a female individual.

https://doi.org/10.1371/journal.pone.0218810.g002
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presents the three synapomorphies considered by Ghedotti [25] as diagnostic for the subgenus

Jenynsia: (1) a modified sixth anal-fin ray segmented on its proximal quarter; (2) unsegmented

on its distal quarter in adult males and (3) the vertically inclined proximal radials associated

with the first six anal-fin rays in the gonopodium. Also, in the analyses under both, equal and

implied weightings, the additional synapomorphies proposed by Aguilera et al. [24] for the

subgenus Jenynsia were recovered (i.e. character state 17–1; 47–1; 51–1 and 64–2; S1 Table). In

the new species herein described, character 64 is reversed to state 0 (S1 Table).

The new species is diagnosable from all other species of the genus by the absence of scales

on the ventral surface of the body or the presence of a single row of scales, continuous or not,

from the isthmus to the pelvic-fin bases (vs. completely scaled ventral surface of body in all

species of Jenynsia; Fig 3). Additionally, J. sulfurica presents a unique coloration pattern,

exhibiting eight to eleven irregular blotches along the mid-lateral surface of the body. These

are formed by dark-brown chromatophores, ranging from rounded spots to vertical bars

spreading up to three scales in depth (vs. different configuration pattern; Fig 1).

Jenynsia sulfurica is distinguished from J. alternimaculata by the presence of pore “W” (Fig

4) on the mandibular canal (vs. absence) and the higher number of gill rakers on the ventral

Fig 3. Jenynsia sulfurica can be diagnosed by the (almost) complete absence of scales in the abdominal area. Ventral surface

photograph of (A) IBIGEO-I 465, female, 25.4 mm; and (B) CI-FML 7287, female, 24.0 mm SL, from the La Quinta lagoon, Santa

Barbara department, Jujuy province, Argentina.

https://doi.org/10.1371/journal.pone.0218810.g003
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arm of the first gill arch (14 vs. 9–12); from J. onca (Lucinda, Reis & Quevedo) by the lack of a

dorsal convex expansion at subdistal segments of the right half of the sixth anal-fin ray of adult

males (vs. presence); from J. sanctaecatarinae (Ghedotti & Weitzman) by the absence of a dis-

tinct rounded spot on the dorsal pectoral-fin base (vs. presence); from J. obscura (Weyen-

bergh) by the lower number of predorsal scales (13–16 vs 19–25); from J. luxata (Aguilera,

Mirande, Calviño & Lobo) by the medial processes of left and right pelvic bones that developed

and overlap each other at ventral midline (vs. processes reduced and not overlapping); and

from J. lineata and J. darwini by the absence of a swelling between the urogenital opening and

anal-fin origin. Additionally, J. sulfurica possesses a longer head (30.5–34.7% SL in males and

30.3–33.6% SL in females) than J. luxata (25.4–29.4% SL and 26.9–29.3% SL), J. tucumana
(25.2–30.0% SL and 24.4–28.7% SL), J. onca (23.5–29.1% SL and 22.0–26.9% SL), J. alternima-
culata (25.6–30.4% SL and 24.2–28.7% SL), and J. sanctaecatarinae (25.3–26.4% SL and 24.6–

26.0% SL); and a longer postorbital (15.5–18.4% SL in males and 15.1–18.0% SL in females;

and 49.3–54.1% of head length (HL) in males and 49.4–56.0% HL in females) than J. tucumana
(11.7–13.5% SL and 11.4–14.1% SL), J. onca (37.0–43.0% HL and 36.4–47.3% HL), J. alterni-
maculata (11.0–15.1% SL and 10.7–14.0% SL), J. sanctaecatarinae (10.1–10.8% SL and 9.4–

9.9% SL), and J. lineata (11.5–13.3% SL and 9.7–15.1% SL). Besides of the coloration pattern,

Jenynsia sulfurica is distinguished from J.maculata by the contact of the lateral ehtmoid with

the dorsolateral processes of vomer (vs. no contact), the intercalar small and restricted to point

of the attachment of the lower limb of postemporal (vs. large intercalar), and the relatively

short anal-fin ray nine along tubular gonopodium (vs. relatively long anal-fin ray nine).

Description

Body stout, with a circular section in the anterior half and posterior half being laterally com-

pressed. Head blunt; head squamation as in Fig 4. Mouth terminal, lower jaw slightly progna-

thous. Inferior lip hypertrophied, more noticeable in some specimens (Fig 2). Dorsal profile of

body convex from snout tip to vertical line through anterior margin of eye, straight or slightly

convex from this point to supraoccipital region, slightly convex to dorsal-fin origin, and

slightly concave backwards to caudal-fin origin. Ventral profile of body straight from snout tip

to vertical line through posterior eye margin, straight or slightly convex to anal-fin origin, and

almost straight or slightly concave to caudal-fin origin. Maximum body depth at half-length

between pectoral and pelvic fins. Sexual dimorphism present, males smaller than females and

with intromittent organ formed by first eight anal-fin rays. Pectoral-fin distal tip reaching pel-

vic-fin insertion. Pelvic fin reaching gonopodial insertion in males, but never reaching anus in

females. Dorsal-fin insertion at vertical line through center of anal-fin base in males, and at

vertical line through or slightly anterior to anal-fin origin in females. Caudal-fin’s posterior

margin straight or slightly convex. Absence of swelling between urogenital opening and anal-

fin base of females.

Pores of cephalic sensory system associated with lateral sensory system (Fig 4) includes the

supraorbital canal, with four branches, the first one containing pores 1 and 2a, second one

includes pores 2b, 3, 4a, the third branch with pores 4b, 5 and the fourth branch includes pores

6 and 7. The pores of the last two supraorbital branches can be open or included in an open

groove. Preopercular canal continuous, with 7 pores infraorbital canal formed by 4 pores;

mandibular canal with pores Z, Ya and Yb separated or included in open groove, as well as

pores Xa and Xb, and pore W, two or three rows of tricuspid teeth in both premaxilla and

dentary.

Morphometric data in Table 1. Dorsal-fin rays 8� (27 specimens counted, � = indicates

count of the holotype) or 9 (3). Anal-fin rays in females 10 (15). Principal caudal-fin rays 14
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(1), 15 (12), or 16� (17). Pectoral-fin rays 16 (12), 17� (16), or 18 (2). Pelvic-fin rays 5 (1), 6�

(29). Lateral line 30 (7), 31� (14), 32 (8). Predorsal scales 13 (2), 14� (11), 15 (13), or 16 (1). Cir-

cumpeduncular scales 16� (30). Vertebrae 30 (2), 31 (3), or 32 (1). Epipleural ribs 10 (5), or 11

(1). Pleural ribs 11 (6). Gill rakers of first arch 14 (4).

Color in life

Light silver to slightly golden body (Fig 2), with whitish belly and gular region with high gua-

nine concentration. Ventral portion of the caudal peduncle light brown. Translucent opercle,

Fig 4. Schematic representation of head squamation and of the head lateral-line sensory system of Jenynsia sulfurica.

https://doi.org/10.1371/journal.pone.0218810.g004

Table 1. Morphometric measurements taken in Jenynsia sulfurica n. sp.; N = 30 individuals including the holotype; SD equals standard deviation.

Holotype Males Females

Range mean SD Range mean SD

Standard length 21.6 18.2–20.8 19.7 0.7 23.6–32.9 27.1 2.8

Percentage of SL

Head length 30.7 30.5–34.7 32.2 1.0 30.3–33.6 31.8 1.0

Predorsal length 64.4 63.3–67.8 65.5 1.3 66.2–70.2 68.1 1.3

Snout to pectoral fin 33.0 32.7–36.7 34.3 1.2 32.7–35.8 34.4 1.0

Snout to pelvic fin 52.7 52.6–57.2 54.4 1.3 53.8–57.7 55.1 1.1

Peduncle depth 15.0 14.0–16.3 15.3 0.7 14.1–15.6 14.7 0.4

Caudal peduncle length 33.8 30.7–34.2 33.0 1.0 25.5–27.6 26.4 0.7

Gonopodium length 25.6 24.1–29.9 26.3 1.4 - - - - - - - - -

Percentage of HL

Snout length 29.1 23.9–26.6 25.7 0.8 25.4–29.5 27.4 1.4

Post orbital length 51.4 49.3–54.1 51.2 1.7 49.4–56.0 53.2 2.2

Eye diameter 27.1 24.6–29.6 27.4 1.3 23.6–27.7 25.3 1.3

Interorbital width 40.1 37.3–44.0 40.9 1.5 40.5–47.8 43.5 1.8

https://doi.org/10.1371/journal.pone.0218810.t001
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reddish violet colored by the gills that are underneath. Golden to silver iris and black pupil.

Scattered melanophores and some iridophores on margins of scales of dorsal region, forming

a diffuse reticulate pattern, more conspicuous on the trunk. Concentration of melanophores in

the middle portion of trunk and tail, forming diffuse, dark-grey vertical bands. Fins hyaline.

Distal portion of gonopodium whitish. Reproductive females present two diffuse, red oval

blotches, anterior to urogenital papilla, separated medially by a whitish area of guanine con-

centration. Pinkish pectoral girdle area when view ventrally due to superficial vascular irriga-

tion. Dorsal region of head with scattered melanophores. Trunk dorsal portion with scattered

melanophores on distal margin of scales. Golden thin longitudinal band anterior to dorsal-fin

origin, about two scales broad. Medial portion of dorsal region of trunk and tail with uni-

formly scattered melanophores.

Color after fixation

Body background pale yellow, darker at dorsal profile and lighter ventrally. Head dorsum,

from snout tip to line through anterior margin of eye, with scattered dark-brown chromato-

phores, more densely concentrated on supraoccipital region. A diffuse mid-dorsal line of

dark-brown chromatophores, from supraoccipital region to caudal-fin origin. Scales in this

area with chromatophores bordering its posterior margin in a half-moon disposition. This pat-

tern repeated in antero-dorsal half of body. Lachrymal area with concentrated chromatophores

almost reaching distal-tip of maxilla, tapering as a line bordering the ventral and posterior eye-

margins. Concentration of dark-brown chromatophores on upper margin of opercle forming

a diffuse horizontal band, more apparent in some specimens. Eight to eleven irregular dashes

along midlateral region of the body formed by dark-brown chromatophores, ranging from

rounded spots to vertical bars, and occupying up to three scales (Fig 1). Gular region, between

the mandibular canals of the cephalic sensory system, with few scattered dark-brown chro-

matophores. Some specimens with dark chromatophores concentrated on dorsal portion of

pectoral-fin base. All fins hyaline with scattered chromatophores bordering the rays.

Distribution

Jenynsia sulfurica is currently only known from Laguna La Quinta, which is part of a thermal

system in the western flank of the Santa Bárbara hills, Santa Bárbara Department, Jujuy Prov-

ince, Northwestern Argentina (Fig 5). It connects to the San Francisco River, tributary of the

Bermejo River in the Paraná River basin.

Ecological and behavioral notes

Jenynsia sulfurica inhabits an extreme environment, with elevated temperatures (39˚-50˚C)

and low dissolved oxygen concentrations (0.25–5 mg/L). In the surroundings of the natural La

Quinta lagoon, the sulfur odor (i.e., rotten egg-like smell) suggests the emission of H2S gas

[32]. All these factors point to the presence of H2S in water, but its concentration has not been

directly measured. Elevated levels of SO4 were reported in the lagoon (990 to 1015 mg/l; [33]),

which in combination with the low oxygen levels also suggest the presence of H2S in water. In

fact, the man-made Santa Barbara sulfur mine opens at the eastern margin of the lagoon. The

water of the lagoon presents ClNa-type fluids, with total dissolved solids reaching up to 14700

mg/L, and pH values between 6.5 and 7.6 [32].

Jenynsia sulfurica is restricted to the lagoon and ponds located approximately 100 meters

from the spring (Fig 6). Multiple attempts were made to localize this species in nearby environ-

ments, but these were all unsuccessful. Habitat segregation by age was observed. Adults were

found mostly in the deepest ponds (i.e., of more than 10 cm in depth), which had low levels of
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dissolved oxygen (from 0.25 to 4.26 mg/l) and elevated water temperatures (40.8 to 42.3˚C)

(Fig 6C). Juveniles were found forming schools in small, shallow ponds (one or two cm deep),

that had the highest levels of dissolved oxygen recorded in the area (5 mg/l) and a water tem-

perature of 39.5˚C (Fig 6D). Field and aquarium observations of this species show that it tends

to form compact shoals that swim very close to the water surface.

Fig 5. Hydrological map of South America. Red rectangle highlights the Province of Jujuy, where the type locality of

Jenynsia sulfurica is indicated by a red dot. (Digital map from catalog.data.gov, U.S. Government Works subject to no

copyright).

https://doi.org/10.1371/journal.pone.0218810.g005

Fig 6. Photographs of the habitat of Jenynsia sulfurica. (A) the lagoon and (B) the sulfide spring which drains into

the lagoon. (C) Pond of more than 10 cm water depth where adults of J. sulfurica were found and (D) small pond of 2

cm water depth inhabited by juveniles of J. sulfurica.

https://doi.org/10.1371/journal.pone.0218810.g006
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Etymology

The specific epithet “sulfurica” is a Spanish adjective, meaning “related to sulfur or from the

sulfur”. In this case refers to the environment rich in sulfur that this species inhabits.

Jenynsia sulfurica presents a single, unique cox1 haplotype

A single and unique mitochondrial cox1 haplotype was found in the new species described

here (Fig 7). This haplotype differs from those found in other species by a variable number of

substitutions (Fig 7). It was most similar to the haplotypes found in specimens of J. alternima-
culata. In this species, two haplotypes were found; the most common one differed by five point

mutations from that found in J. sulfurica and the second one by eight point mutations. Of

these mutations, two translate into amino acid substitutions (I75M and V128I, following Poeci-
lia sulphuraria residue number). Three haplotypes were found for J. tucumana and two for J.
lineata. These differed by over 20 point mutations from the group of haplotypes of J. sulfurica
and J. alternimaculata.

Phylogenetic relationships based on DNA, morphology and fossil taxa

Under equal weights, twelve most parsimonious trees of 1007 steps were found (CI = 57.2;

RI = 59.3). The consensus tree topology under equal weighting was only partially resolved for

both subgenera (Fig 8A). In the consensus tree, J. sulfurica was placed as sister taxa to J. alterni-
maculata, and this group as sister to a clade composed by J. tucumana + J. obscura. This clade

formed a polytomy with J. luxata, J. onca, and a clade including J. darwini and J. lineata. In

turn, this bigger clade formed a trichotomy with J.maculata and J. sanctaecatarinae. In the

subgenus Plesiojenynsia, a politomy was observed including J. diphyes, J. weitzmani, J. unitae-
nia and a clade formed by J. eigenmanni + J. eirmostigma.

Under implied weighting, one most parsimonious tree of 1007 steps was found (CI = 57.2;

RI = 59.3), in a wide range of concavities from K = 4 to K = 20. The tree topology (under

K = 8; Fit: 42.51420) is totally resolved for the subgenera Plesiojenynsia and partially resolved

for Jenynsia (Fig 8B). Jenynsia sulfurica was again recovered as sister taxa to J. alternimaculata,

and this clade as sister of that composed of J. tucumana and J. obscura, as in the consensus tree

under equal weights. This group formed a trichotomy with the groups J. luxata + J. onca and J.
darwini + J. lineata. Jenynsia maculata was obtained as the sister group to all other species in

the subgenus Jenynsia, with J. sanctaecatarinae branching next. The subgenus Plesiojenynsia
was also completely resolved (Fig 8B).

Under equal and implied weights, Sachajenynsia pacha (Sferco, Herbst, Aguilera & Mir-

ande) was basal to all anablepids, and Tucmanableps cionei (Sferco, Herbst, Aguilera & Mir-

ande) and Sanjuanableps calingasta (Bogan, Contreras, Agnolin, Tomassini & Peralta) are

successive sister taxa of Anableps.

Discussion

Phylogenetic relationships of Jenynsia sulfurica
The phylogenetic analysis herein performed under parsimony combining morphological and

molecular data matrices and including known fossil taxa [34, 35], has resulted in a new

hypothesis of relationships that present differences with previous hypothesis. Unlike the results

presented by Bogan et al. [34], both under equal and implied weights, we recovered the mono-

phyly of Jenynsia. In contrast to the last published phylogenetic analysis [36], the relationships

of the subgenus Jenynsia were not totally resolved and the two clades within this subgenus

were not recovered. Nevertheless, the phylogenetic placement of the three recently described
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extinct taxa agrees with that proposed by Sferco et al. [35], Bogan et al. [34], as well as the rela-

tionships of the subgenus Plesiojenynsia recently proposed by Amorim and Costa [36].

In particular, including J. sulfurica resolved the trichotomy in the subgenus Jenynsia seen in

previous phylogenetic hypothesis including J. tucumana, J. obscura and J. alternimaculata [35].

Fig 7. Haplotype network based on statistical parsimony of mitochondrial cox1 gene.

https://doi.org/10.1371/journal.pone.0218810.g007
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The subgenus Jenynsia proposed by Ghedotti [25] was originally supported by three synapo-

morphies, the anal-fin ray 6 of males segmented on its proximal quarter (CH 48–1) and unseg-

mented on its distal quarter (CH 49–1), the vertical inclined proximal and middle radials

associated with the first six anal-fin rays in adult males (CH 54–1). Later, Aguilera et al. [24]

proposed four additional synapomorphies, the long posterodorsal process of palatine in

dorsal view long (CH 17–1), the left and right hemitrichs of anal-fin ray six in adult males

not laterally paired (CH 47–1), the absence of a protuberance on tip of tubular gonopodium

formed by anal-fin ray eight (CH 51–1) and a series of three or more narrow lines not associ-

ated with distinct midlateral stripe on caudal peduncle present and continuous forming nar-

row lines (CH 64–1). The analysis herein performed has recovered the three synapomorphies

proposed by Ghedotti [25] and the additional four later proposed by Aguilera et al. [24] as

diagnostic for the subgenus Jenynsia, in contrast with Amorim [24] who recovered 6 from the

7 synapomorphies.

Adaptations to sulfide springs: A case of convergence across fish families

Jenynsia sulfurica presents several morphological characters that appear to be adaptations to

the presence of H2S in the La Quinta lagoon [32]. The enlarged head and opercular area are

two of the most conspicuous characteristics of the new species that are unique among species

of the genus Jenynsia (see Table 1 and Diagnosis above). Similar characteristics have been pre-

viously described for poeciliid fish inhabiting hydrogen sulfide-rich habitats [15, 18] and are

proposed to be adaptations to the toxic conditions of these environments [10]. Enlarged head

size allows for an increase in gill surface area, which is an advantage in oxygen poor environ-

ments in order to cover the high respiratory demands and the requirements of oxygen for

Fig 8. Topologies of most equally parsimonious trees and GC values. (A) equal weights and (B) implied weighting with supports

measured under K = 8. Unsupported nodes are shown as collapsed. Families and outgroups are depicted for the first comprehensive

analysis, combining morphological and molecular data.

https://doi.org/10.1371/journal.pone.0218810.g008
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sulfide detoxification [15]. Additionally, J. sulfurica was observed to swim close to the water

surface and to have hypertrophic lower lips, both characteristics seen in other sulfide tolerant

species and considered to be adaptive in oxygen-poor environments by facilitating access to

the oxygen richer layer at interface between water and air [20, 37]. For example, poeciliid spe-

cies from sulfide springs also spend a significant proportion of their time budget at the surface

of the water [38], and often have evolved heritable or plastic morphological modifications of

the lower jaw or the lower lip that maximize the uptake of oxygen from the water surface [18].

Finally, we found that J. sulfurica’s cox1 gene differs from that of other Jenynsia species by hav-

ing two non-synonymous substitutions that result in amino acid changes that are convergent

with those observed in Poecilia sulphuraria and sulfide spring adapted populations of the P.

mexicana species complex [21]. Of those, I75M has been suggested to provide a physiological

mechanism related to living in sulfide-rich environments. The replacement of isoleucine by

methionine at this residue results in a configurational change of the protein that affects the

size of the D-pathway channel, still allowing for the passage of H2O but blocking H2S [21].

Together, these are remarkable examples of convergence across different fish families in their

adaptation to the toxic conditions in freshwater sulfide springs, and contribute to the ongoing

discussion about the predictability of evolution [39–41].

Potential causes of reproductive isolation

Another species, J. alternimaculata, is found in nearby, non-sulfidic streams and rivers within

the same drainage where J. sulfurica is found. This species presents a rather similar coloration

pattern to J. sulfurica (i.e. elongate markings on the lateral surface of the body) and several

osteological and genetic affinities that have resulted in the recovery of both species as sister

taxa in the phylogenetic analysis. Nevertheless, the unique characteristic of J sulfurica, such as

the absence of scales in the abdominal area and the different cox1 haplotypes found in the two

species, suggest that they have independent evolutionary histories. However, the mechanisms

of reproductive isolation between these species are yet undetermined.

Divergent selection pressures can result in phenotypic differentiation of traits that confer a

local fitness advantage when populations of a species occupy different environments [42]. In

turn, such divergent natural selection could lead to the emergence of barriers to gene flow

between nearby populations, resulting in ecological speciation [43]. The extreme abiotic con-

ditions encountered in freshwater sulfide springs, such as the La Quinta lagoon which is inhab-

ited by J. sulfurica, are known to impose different selection pressures to those experienced in

nearby non-sulfidic habitats [5, 10, 17]. Additionally, natural and sexual selection against

immigrants are known to contribute to the evolution of reproductive barriers between sulfidic

and non-sulfidic populations of fish [38, 44]. Thus, the presence of H2S in the environment is

recognized as an important driver of local adaptation and speciation [10]. Here, we present

evidence suggesting that selection imposed by the presence of H2S has resulted in morphologi-

cal and molecular divergence between J. sulfurica and its sister species, J. alternimaculata. It is

possible that it has also contributed to the evolution of reproductive barriers between these

species, and ongoing studies are aiming to determine the mechanisms involved in this process.

Conclusions

So far, fishes of only four taxonomic families were known to have representatives in freshwater

sulfide springs: Poeciliidae, Cyprinodontidae, Rivulidae (all Cyprinodontiformes), and Syn-

branchidae (Synbranchiformes) [10, 16]. Moreover, only six of these species are endemic to

sulfide springs (i.e., Cyprinodon bobmilleri, Aphanius ginaonis, Gambusia eurystoma, Limia
sulphurophila, Poecilia sulphuraria, and P. thermalis) [10]. Jenynsia sulfurica is the first species
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of the genus Jenynsia, and the only species within Anablepidae currently known to inhabit sul-

fide springs, a very extreme freshwater environment. Moreover, Jenynsia sulfurica is the first

microendemism within the genus, being present only in a small sulfide thermal spring in

Northwestern Argentina.

Members of the order Cyprinodontiformes are in general highly tolerant to high tempera-

tures (e.g., [30, 45]), different concentrations of salinity (e.g., [31]), and a wide range of

physicochemical environmental conditions (e.g., [29]), including environments with high

concentrations of sulfide (e.g., [15]). In the genus Jenynsia, only a few studies were conducted

to evaluate the tolerance of these fish to different environmental conditions, and almost all

focused on J. lineata (= J.multidentata). This species is considered to be highly tolerant (e.g.,

euryhaline, eurythermic and euryoic), as it is commonly found to inhabit a wide range of abi-

otic conditions [26, 27, 46–50]. Although there are no studies in the remaining species of the

genus, it is possible that closely related species also show high tolerance to variation in different

abiotic factors. This is in line with the pattern of diversity within the genus, where different

species are found across drainages (i.e., in the absence of gene flow) rather than within drain-

ages (i.e., in the presence of gene flow). Thus, Jenynsia sulfurica is, from an ecological and an

evolutionary perspective, an interesting species that attests to the extreme conditions of H2S

enriched environments.

Materials and methods

Study area

We recently discovered a population of fish of the genus Jenynsia in a natural small, semicircu-

lar pond at the foothills of the Santa Barbara range, in “Ramal Jujeño”, Santa Barbara Depart-

ment, Jujuy, Argentina, which is scented by sulfur odor and partially covered by brackish mud

deposits [32]. This pond, named La Quinta lagoon, is fed by several internal and nearby hot

springs that run through whitish riverbeds, indicative of mineral deposits (Fig 1). Both charac-

teristics, the sulfur odor and mineral deposits, suggest the presence of H2S at high concentra-

tions in the water [17]. Point measurements of dissolved oxygen and water temperature were

taken at the collection site with a portable Oxymeter Hanna (HI9146).

Specimens sampled and species description

Six specimens were cleared and counterstained following Taylor & Van Dyke [51]. Measure-

ments are straight distances taken with a caliper to nearest 0.1 mm, following Aguilera & Mir-

ande [52], and expressed as percent of standard length (SL; Table 1). Nomenclature of the

sensory canal system of the head follows Gosline [53](Fig 3). For the description of the new

species, the last two rays in the anal fin of females and dorsal fin of all specimens were counted

as separate elements following Ghedotti & Weitzman [54]. The number of vertebrae includes

the hypural complex as one element, and the gill rakers were counted from the ventral limb of

the first gill arch. All measurements were compared to specimens of previously described spe-

cies on the genus Jenynsia (S1 Appendix). All examined specimens were deposited at the

ichthyological collection of the Fundación Miguel Lillo, Tucumán, Argentina (CI-FML) or the

collection of the Instituto de Bio y Geociencias del Noroeste Argentino, Salta, Argentina (IBI-

GEO-I). All experimental procedures described were approved by the Animal Ethics Commit-

tee of the Fundación Miguel Lillo, Tucumán, Argentina, which consider animal welfare

regulations. Collection permit was granted by the Ministerio de Ambiente de la Provincia de

Jujuy (Permits 1103-306-M/2016).
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Phylogenetic analysis

To reconstruct a new phylogenetic hypothesis including the new species, we used a dataset

that combined the morphological data published by Ghedotti [25] and subsequent additions

to Bogan et al. [34], with molecular data of two markers (mitochondrial cox1 and nuclear

sh3px3 genes) obtained from Genbank (accessions numbers in S2 Appendix), plus molecular

data of the marker cox1 sequenced and subsequently aligned in the course of this study.

The analyzed matrix was composed of 1444 characters, including 1373 molecular (COX1 +

SH3PX3) and 71 morphological characters. Phylogenetic analyses were performed using TNT

software [55] under equal and implied weighting in a wide range of concavities (constant K)

[56] using the protocol by Aguilera & Mirande [52] and Aguilera et al. [24]. Clade support was

estimated using Symmetric Resampling, expressed as GC values (groups present/contradicted)

[57]. The analyses were rooted in Profundulus labialis (Günther), and the outgroup includes

Fluviphylax obscurus (Costa), Aplocheilichthys spilauchen (Duméril) and Alfaro cultratus
(Regan). The analyses were performed both, with and without constraints in the outgroup

structure as used by Ghedotti [25]. As previously done by Aguilera & Mirande [52] and Agui-

lera et al. [24], characters 19, 30, 40, 46, and 58 of Ghedotti’s [25] matrix were considered as

additive (the list of character descriptions and possible character states used is included in the

S1 Table).

Sequencing of mitochondrial cox1 gene

The mitochondrial cox1marker was PCR amplified using DreamTaq DNA Polymerase (Life

Technologies, Carlsbad, USA). The size of the amplified PCR products was approximately 700

basepairs (bp; GenBank accession numbers: MN004782- MN004794), primers are listed in the

Supporting Information. Primer annealing temperatures were 54˚C (J. lineata, n = 10) or 58˚C

(J. tucumana (Aguilera & Mirande), n = 11, J. alternimaculata (Fowler), n = 8, J. sulfurica n.sp.,

n = 11). Purified templates were sequenced on an ABI 3130xl Genetic Analyzer (Life Technol-

ogies). The quality of sequencing reads was checked manually and reads were trimmed and

assembled with SeqMan Pro (DNASTAR Lasergene). The trimmed DNA sequences used for

the analyses constituted total lengths of 514 bp. We created a haplotype network estimation

based on Statistical Parsimony (TCS, Templeton et al. 1992) as implemented in PopART ver-

sion 1.7 (http://popart.otago.ac.nz).

Nomenclatural acts

The electronic edition of this article conforms to the requirements of the amended Interna-

tional Code of Zoological Nomenclature, and hence the new names contained herein are avail-

able under that Code from the electronic edition of this article. This published work and the

nomenclatural acts it contains have been registered in ZooBank, the online registration system

for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated

information viewed through any standard web browser by appending the LSID to the prefix

“http://zoobank.org/”. The LSID for this publication is: urn:lsid:zoobank.org:pub: 44A49BCD-

237A-4277-820A-5926D2147536.
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