Dr. Claudius Kratochwil
Department of Biology
Building M, Room M823 University of Konstanz Universitätsstr. 10 78457 Konstanz Tel: +49 (0) 7531 884583 E-mail: claudius.kratochwil@gmail.com Homepage: www.claudius-kratochwil.com |
Evolution is an often surprisingly fast process that results in new adaptations, but also is the mechanism for the origin of novel species. Genetic variation and the resulting changes in an organism’s characteristics are the raw material for selection to act on, which might allow for the evolution of adaptations. My study organisms are cichlid fish, a famous textbook example of exuberant color diversity and record-breaking rates at which new species arise, chosen as a means for understanding the molecular, cellular and developmental mechanisms that drive phenotypic diversity that Charles Darwin already talked about in the “Origin of Species”: “From so simple a beginning, endless forms most beautiful and most wonderful have been, and are being, evolved”.
More information about my past and ongoing project can be found here.
More information about my past and ongoing project can be found here.
Curriculum Vitae
Research Grants
Awards and Fellowships
Publications
[27] Kautt A*, Kratochwil CF*, Nater A*, Machado-Schiaffino G, Olave M, Henning F, Torres-Dowdall J, Härer A, Hulsey CD, Franchini P, Pippel M, Myers EW, Meyer A (2020): "Contrasting signatures of genomic divergence during sympatric speciation" Nature Link
[26] Urban S, Nater A, Meyer A, Kratochwil CF (2020): "Different sources of allelic variation drove repeated color pattern divergence in cichlid fishes" Molecular Evolution and Evolution Link
[25] Liang Y, Meyer A and Kratochwil CF (2020): “Neural innervation as a potential trigger of morphological color change and sexual dimorphism in cichlid fish". Scientific Reports 10, 12329. Link
[24] Maheshwari U, Kraus D, Vilain N, Holwerda SJB, Cankovic V, Maiorano NA, Kohler H, Satoh D, Sigrist M, Arber S, Kratochwil CF, Di Meglio T, Ducret S, Rijli FM (2020): “Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets". Cell Reports 31 (11), 107767. Link
[23] Liang Y, Gerwin J, Meyer A and Kratochwil CF (2020): “Developmental and cellular basis of vertical bar color patterns in the East African cichlid fish Haplochromis latifasciatus". Front. Cell. Dev. Biol. 8:62. Link
[22] Kratochwil CF and Rijli FM (2020): “The Cre/lox system to assess the development of the mouse brain”, Brain development: Methods and Protocols, Methods in Molecular Biology (Simon G. Sprecher ed.), Springer, New York. 2047, 491–512. Link
[21] Kratochwil CF*, Liang Y*, Urban S, Torres-Dowdall J, and Meyer A (2019): Evolutionary dynamics of structural variation at a key locus for color pattern diversification in cichlid fishes. Genome Biology and Evolution 11(12):3452–3465. Link
[20] Montiglio PO*, Gotanda KM*, Kratochwil CF*, Laskowski KL*, Farine DR* (2019). Hierarchically embedded interaction networks represent a missing link in the study of behavioral and community ecology. Behavioral Ecology, arz168 Link
[19] Kratochwil CF*, Urban S*, and Meyer A (2019). Genome of the Malawi golden cichlid fish (Melanochromis auratus) reveals exon loss of oca2 in an amelanistic morph. Pigment Cell & Melanoma Research 32:719-723. Link (Cover)
[18] Kratochwil CF (2019). Molecular mechanisms of convergent color pattern evolution. Zoology 134:66-68. Link (Cover)
[17] Kratochwil CF, and Meyer A (2019). Fragile DNA contributes to repeated evolution. Genome Biology 20(1):39. Link
[16] Kratochwil CF, Liang Y, Gerwin J, Woltering JM, Urban S, Henning F, Machado-Schiaffino G, Hulsey CD, and Meyer A. (2018). Agouti-related peptide 2 facilitates convergent evolution of stripe patterns across cichlid fish radiations. Science 362:457–460. Link
See also perspective by Hugo Gante: Gante, H. F. (2018). How fish get their stripes—again and again. Science 362:396–397. Link
[15] Saemi-Komsari M*, Mousavi-Sabet H*, Kratochwil CF*, Sattari M, Eagderi S, and Meyer A (2018): Early developmental and allometric patterns in the electric yellow cichlid Labidochromis caeruleus. Journal of Fish Biology 92:1888–1. Link
[14] Kratochwil CF*, Sefton MS*, Liang Y, and Meyer A (2017). Tol2 transposon-mediated transgenesis in the Midas cichlid (Amphilophus citrinellus) — towards understanding gene function and regulatory evolution in an ecological model system for rapid phenotypic diversification. BMC Developmental Biology 17:15. Link
[13] Kratochwil CF, Maheshwari U, and Rijli FM (2017). The Long Journey of Pontine Nuclei Neurons: From Rhombic lip to Cortico-Ponto-Cerebellar Circuitry. Front. Neural Circuits 11:3. Link
[12] Renier N, Dominici C, Erzurumlu R,, Kratochwil CF, Rijli FM, Gaspar P, and Chedotal A (2017). A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex. eLife 6, e23494. Link
[11] Kratochwil CF*, Geissler L*, Irisarri I*, and Meyer A (2015). Molecular evolution of the neural crest regulatory network in ray-finned fish. Genome Biology and Evolution 7 (11), 3033-3046. Link (Cover)
[10] Bechara A, Laumonnerie C, Vilain N, Kratochwil CF, Cankovic V, Maiorano NA, Kirschmann MA, Ducret S, and Rijli F (2015). Hoxa2 selects barelette neuron identity and connectivity in the mouse somatosensory brainstem. Cell Reports. 13 (4), 783 -797. Link
[9] Kratochwil CF and Meyer A (2015). Evolution: Tinkering within gene regulatory landscapes. Current Biology 25 (7) R185-R288. Link
[8] Kratochwil CF and Meyer A (2015). Mapping active promoters by ChIP-seq profiling of H3K4me3 in cichlid fish – a first step to uncover cis-regulatory elements in ecological model teleosts. Molecular Ecology Resources. 15 (4), 761-771. Link
[7] Kratochwil CF*, Sefton MS*, and Meyer A (2015). Embryonic and larval development in the Midas cichlid fish species flock (Amphilophus spp.): a new evo-devo model for the investigation of adaptive novelties and species differences. BMC Developmental Biology 15: 12. Link
[6] Kratochwil CF and Meyer A (2015). Closing the genotype–phenotype gap: Emerging technologies for evolutionary genetics in ecological model vertebrate systems. BioEssays 37 (2), 213-226. Link (Cover)
[5] Kratochwil CF and Rijli FM (2014): “The Cre/lox system to assess the development of the mouse brain”, Brain development: Methods and Protocols, Methods in Molecular Biology (Simon G. Sprecher ed.), Springer, New York. 1082. 295–313. Link
[4] Di Meglio T*, Kratochwil CF*, Vilain N, Loche A, Vitobello A, Yonehara K, Roska B, Peters AHFM, Wellik D, Ducret S, and Rijli FM (2013). Ezh2 orchestrates topographic tangential migration and connectivity of precerebellar neurons. Science 339 (6116), 204–207. Link
[3] Minoux M, Kratochwil CF, Ducret S, Amin S, Kitazawa T, Kurihara H, Bobola N, Vilain N, and Rijli FM (2013). Mouse Hoxa2 genetic analysis provides a model for microtia and auricle duplication. Development 140 (21), 4386–4397. Link
[2] Kastenhuber E*, Kratochwil CF*, Ryu S*, Schweitzer J, and Driever W (2010). Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish. J Comp Neurol 518 (4), 439-458. Link
[1] Tervonen TA*, Louhivuori V*, Sun X, Hokannen M-E, Kratochwil CF, Zebryk P, Castren E, and Castren ML (2009). Aberrant differentiation of glutamatergic cells in neocortex of mouse model for fragile X syndrome. Neurobiol. Dis. 33 (2), 250-259 Link
* equal contribution
- from 2021 (Tenure Track) Group Leader at the Institute for Biotechnology, Helsinki, Finland (Check out my homepage)
- 2013 – 2020 Postdoctoral fellow / Principal Investigator, Faculty of Biology & Zukunftskolleg, University of Konstanz, Germany (Host: Prof. Dr. Axel Meyer)
- 2008 – 2013 PhD in Neurobiology, Friedrich Miescher Institute, Basel, Switzerland (Advisor: Prof. Dr. Filippo Rijli)
- 2007 – 2008 Diploma thesis In Biology, Albert-Ludwigs-University Freiburg, Germany (Advisor: Prof. Dr. Wolfgang Driever)
- 2004 – 2008 Diploma studies in Biology, Albert-Ludwigs-University Freiburg, Germany
Research Grants
- 2019 – 2022 German Research Foundation (DFG) Research Grant
- 2017 – 2020 German Research Foundation (DFG) Scientific Network Grant
- 2017 Zukunftskolleg Co-Funding, University of Konstanz
- 2016 Investment Program for Research, University of Konstanz
- 2016 Young Scholar Fund, University of Konstanz
- 2016 – 2019 German Research Foundation (DFG) Research Grant
- 2016 – 2019 Elite Program for Postdocs, Baden-Württemberg
Stiftung - 2015 –2016 Reinvestment Program, University of Konstanz (with Joost Woltering)
- 2015 – 2016 Interim Grant, University of Konstanz
- 2015 Zukunftskolleg Co-Funding, University of Konstanz
- 2015 Zukunftskolleg Student Assistance Program, University of Konstanz
- 2013 Zukunftskolleg Co-Funding, University of Konstanz
- 2014 Zukunftskolleg Student Assistance Program, University of Konstanz
- 2013 Zukunftskolleg Co-Funding, University of Konstanz
- 2013 – 2015 Zukunftskolleg
Research Allowance, University of Konstanz
Awards and Fellowships
- 2013 – 2015: Marie Curie Zukunftskolleg
Incoming Fellowship (ZIF-MC) - 2013 – 2015: Early Postdoc.
Mobility Fellowship, Swiss National Science Foundation, SNSF - 2008 – 2013: PhD Scholarship, Novartis Research Foundation
Publications
[27] Kautt A*, Kratochwil CF*, Nater A*, Machado-Schiaffino G, Olave M, Henning F, Torres-Dowdall J, Härer A, Hulsey CD, Franchini P, Pippel M, Myers EW, Meyer A (2020): "Contrasting signatures of genomic divergence during sympatric speciation" Nature Link
[26] Urban S, Nater A, Meyer A, Kratochwil CF (2020): "Different sources of allelic variation drove repeated color pattern divergence in cichlid fishes" Molecular Evolution and Evolution Link
[25] Liang Y, Meyer A and Kratochwil CF (2020): “Neural innervation as a potential trigger of morphological color change and sexual dimorphism in cichlid fish". Scientific Reports 10, 12329. Link
[24] Maheshwari U, Kraus D, Vilain N, Holwerda SJB, Cankovic V, Maiorano NA, Kohler H, Satoh D, Sigrist M, Arber S, Kratochwil CF, Di Meglio T, Ducret S, Rijli FM (2020): “Postmitotic Hoxa5 Expression Specifies Pontine Neuron Positional Identity and Input Connectivity of Cortical Afferent Subsets". Cell Reports 31 (11), 107767. Link
[23] Liang Y, Gerwin J, Meyer A and Kratochwil CF (2020): “Developmental and cellular basis of vertical bar color patterns in the East African cichlid fish Haplochromis latifasciatus". Front. Cell. Dev. Biol. 8:62. Link
[22] Kratochwil CF and Rijli FM (2020): “The Cre/lox system to assess the development of the mouse brain”, Brain development: Methods and Protocols, Methods in Molecular Biology (Simon G. Sprecher ed.), Springer, New York. 2047, 491–512. Link
[21] Kratochwil CF*, Liang Y*, Urban S, Torres-Dowdall J, and Meyer A (2019): Evolutionary dynamics of structural variation at a key locus for color pattern diversification in cichlid fishes. Genome Biology and Evolution 11(12):3452–3465. Link
[20] Montiglio PO*, Gotanda KM*, Kratochwil CF*, Laskowski KL*, Farine DR* (2019). Hierarchically embedded interaction networks represent a missing link in the study of behavioral and community ecology. Behavioral Ecology, arz168 Link
[19] Kratochwil CF*, Urban S*, and Meyer A (2019). Genome of the Malawi golden cichlid fish (Melanochromis auratus) reveals exon loss of oca2 in an amelanistic morph. Pigment Cell & Melanoma Research 32:719-723. Link (Cover)
[18] Kratochwil CF (2019). Molecular mechanisms of convergent color pattern evolution. Zoology 134:66-68. Link (Cover)
[17] Kratochwil CF, and Meyer A (2019). Fragile DNA contributes to repeated evolution. Genome Biology 20(1):39. Link
[16] Kratochwil CF, Liang Y, Gerwin J, Woltering JM, Urban S, Henning F, Machado-Schiaffino G, Hulsey CD, and Meyer A. (2018). Agouti-related peptide 2 facilitates convergent evolution of stripe patterns across cichlid fish radiations. Science 362:457–460. Link
See also perspective by Hugo Gante: Gante, H. F. (2018). How fish get their stripes—again and again. Science 362:396–397. Link
[15] Saemi-Komsari M*, Mousavi-Sabet H*, Kratochwil CF*, Sattari M, Eagderi S, and Meyer A (2018): Early developmental and allometric patterns in the electric yellow cichlid Labidochromis caeruleus. Journal of Fish Biology 92:1888–1. Link
[14] Kratochwil CF*, Sefton MS*, Liang Y, and Meyer A (2017). Tol2 transposon-mediated transgenesis in the Midas cichlid (Amphilophus citrinellus) — towards understanding gene function and regulatory evolution in an ecological model system for rapid phenotypic diversification. BMC Developmental Biology 17:15. Link
[13] Kratochwil CF, Maheshwari U, and Rijli FM (2017). The Long Journey of Pontine Nuclei Neurons: From Rhombic lip to Cortico-Ponto-Cerebellar Circuitry. Front. Neural Circuits 11:3. Link
[12] Renier N, Dominici C, Erzurumlu R,, Kratochwil CF, Rijli FM, Gaspar P, and Chedotal A (2017). A mutant with bilateral whisker to barrel inputs unveils somatosensory mapping rules in the cerebral cortex. eLife 6, e23494. Link
[11] Kratochwil CF*, Geissler L*, Irisarri I*, and Meyer A (2015). Molecular evolution of the neural crest regulatory network in ray-finned fish. Genome Biology and Evolution 7 (11), 3033-3046. Link (Cover)
[10] Bechara A, Laumonnerie C, Vilain N, Kratochwil CF, Cankovic V, Maiorano NA, Kirschmann MA, Ducret S, and Rijli F (2015). Hoxa2 selects barelette neuron identity and connectivity in the mouse somatosensory brainstem. Cell Reports. 13 (4), 783 -797. Link
[9] Kratochwil CF and Meyer A (2015). Evolution: Tinkering within gene regulatory landscapes. Current Biology 25 (7) R185-R288. Link
[8] Kratochwil CF and Meyer A (2015). Mapping active promoters by ChIP-seq profiling of H3K4me3 in cichlid fish – a first step to uncover cis-regulatory elements in ecological model teleosts. Molecular Ecology Resources. 15 (4), 761-771. Link
[7] Kratochwil CF*, Sefton MS*, and Meyer A (2015). Embryonic and larval development in the Midas cichlid fish species flock (Amphilophus spp.): a new evo-devo model for the investigation of adaptive novelties and species differences. BMC Developmental Biology 15: 12. Link
[6] Kratochwil CF and Meyer A (2015). Closing the genotype–phenotype gap: Emerging technologies for evolutionary genetics in ecological model vertebrate systems. BioEssays 37 (2), 213-226. Link (Cover)
[5] Kratochwil CF and Rijli FM (2014): “The Cre/lox system to assess the development of the mouse brain”, Brain development: Methods and Protocols, Methods in Molecular Biology (Simon G. Sprecher ed.), Springer, New York. 1082. 295–313. Link
[4] Di Meglio T*, Kratochwil CF*, Vilain N, Loche A, Vitobello A, Yonehara K, Roska B, Peters AHFM, Wellik D, Ducret S, and Rijli FM (2013). Ezh2 orchestrates topographic tangential migration and connectivity of precerebellar neurons. Science 339 (6116), 204–207. Link
[3] Minoux M, Kratochwil CF, Ducret S, Amin S, Kitazawa T, Kurihara H, Bobola N, Vilain N, and Rijli FM (2013). Mouse Hoxa2 genetic analysis provides a model for microtia and auricle duplication. Development 140 (21), 4386–4397. Link
[2] Kastenhuber E*, Kratochwil CF*, Ryu S*, Schweitzer J, and Driever W (2010). Genetic dissection of dopaminergic and noradrenergic contributions to catecholaminergic tracts in early larval zebrafish. J Comp Neurol 518 (4), 439-458. Link
[1] Tervonen TA*, Louhivuori V*, Sun X, Hokannen M-E, Kratochwil CF, Zebryk P, Castren E, and Castren ML (2009). Aberrant differentiation of glutamatergic cells in neocortex of mouse model for fragile X syndrome. Neurobiol. Dis. 33 (2), 250-259 Link
* equal contribution